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 reactions were allowed to incubate the remaining 40
 min. The sample that was treated with protein
 synthesis inhibitors did not synthesize product,
 whereas the sample that received mock inhibitors
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 33. A decrease in the number of chains after proteolysis
 of posttranslational translocation reaction was re-
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 The organization of the visual cortex has been considered to be highly stable in adult
 mammals. However, 5° to 10° lesions of the retina in the contralateral eye markedly
 altered the systematic representations of the retina in primary and secondary visual
 cortex when matched inputs from the ipsilateral eye were also removed. Cortical
 neurons that normally have receptive fields in the lesioned region of the retina acquired
 new receptive fields in portions of the retina surrounding the lesions. The capacity for
 such changes may be important for normal adjustments of sensory systems to
 environmental contingencies and for recoveries from brain damage.
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 A RE THE MAPS OF VISUAL SPACE IN

 visual cortex capable of reorganiza-
 tion in adult mammals? As in other

 mammals, the visual cortex of cats contains
 several retinotopic representations of the
 visual field, including those in areas 17 and
 18 (1). Such systematic representations of
 peripheral receptor arrays also characterize
 somatosensory and auditory cortex (2). Un-
 der normal circumstances, these sensory
 maps develop in a highly consistent manner
 in individuals of the same species. However,
 development of these topological maps can
 be altered by abnormal sensory inputs, in-
 cluding those produced by sensory depriva-
 tion and damage to the peripheral sensory
 sheet (3, 4). Thus, the nature of the input
 from the receptor sheet partly determines
 the ultimate organization of developing sen-
 sory maps. In the visual system, sensory
 manipulations such as monocular depriva-
 tion, induced strabismus, and unilateral de-
 focusing of the image can alter cortical
 organization (3). However, these manipula-
 tions affect cortical organization mainly or
 only within a critical developmental period
 extending a few months postnatally in cats
 or several years in humans (3). Thus, evi-
 dence supports the view that the organiza-
 tion of visual cortex remains highly stable
 after initial development, and there has been
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 little reason to suppose that basic features of
 retinotopic maps can change in adults.

 In contrast to the visual system, recent
 experiments on somatosensory cortex indi-
 cate that the organization of sensory maps
 can be modified even in adults (4, 5). For
 example, if part of the normal representation
 of the hand in primary somatosensory cortex
 is deprived of its normal source of activation
 by cutting a peripheral nerve, the cortical
 representation reorganizes over a period of
 hours to weeks so that neurons in the de-

 prived zone of cortex acquire new receptive
 fields on other parts of the hand. Such adult
 plasticity implies that previously existing
 connections in the brain are capable of
 changing in synaptic effectiveness so that
 new receptive fields and new representation-
 al organizations can emerge in cortex. Such
 changes could be important in normal ad-
 justments of the brain to alterations in the
 sensory environment, as well as in compen-
 sations for peripheral and central damage to
 the nervous system. Because the potential
 for such reorganization would seem to exist
 in other sensory fields, we investigated the
 possibility of adult plasticity in visual cortex
 with an experimental approach that has been
 used successfully for the somatosensory sys-
 tem.

 Parts of areas 17 and 18 of the visual

 cortex were deprived of a normal source of
 activation by placing lesions 5° to 10° in
 diameter just above the area centralis in the
 retina of one eye of adult cats (6). By itself
 this procedure produced no notable change
 in retinotopic organization when tested in
 one cat. Most cortical neurons are binocu-

 larly activated and thus have two retinotopi-
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 cally matched receptive fields. Hence, re-
 cordings made after a retinal lesion simply
 demonstrated restricted regions of cortex
 where neurons had receptive fields only in
 the intact eye. The monocular lesion, there-
 fore, merely revealed an effect of removing
 one of two sources of activation, rather than
 any basic reorganization (7). However,
 when restricted zones of cortex were totally
 deprived of normal sources of visual activa-
 tion by placing a lesion in one eye and
 removing the other eye, dramatic changes in
 the retinotopic organization of areas 17 and
 18 were produced. Neurons in the deprived
 zone of cortex acquired new receptive fields
 representing inputs from retinal locations
 around the margins of the lesion.

 To allow time for cortical reorganization
 to occur, most of our recordings were made
 2 to 6 months after the retinal lesion and the

 enucleation of the other eye. In each experi-
 ment, microelectrode recordings were made
 from neurons in an array of closely spaced
 electrode penetrations within and around
 the deprived cortex (8). Outside the zone of
 altered cortex in areas 17 and 18, neurons
 had receptive fields of normal locations and
 sizes. Thus, in the explored region of cortex,
 rows of recording sites extending mediola-
 terally from area 17 to area 18 produced
 rows of receptive fields systematically dis-

 placed from the last, forming a progression
 within the contralateral lower visual quad-
 rant toward the zero vertical meridian as the

 border of areas 17 and 18 was reached, and
 back again for sites in area 18. Within the
 zone of altered cortex, neurons were activat-

 ed by visual stimuli and had receptive fields
 of normal sizes. However, the receptive
 fields of these neurons were displaced from
 the region of the retinal lesion to adjacent
 parts of the retina (Fig. 1). Thus, for medio-
 lateral rows of recording sites into the re-
 gion of deprived cortex, receptive fields
 progressed from locations just temporal to
 the scotoma or "blind spot" produced by the
 lesion to the margin of the scotoma. Then,
 the progression of receptive fields ceased as
 the deprived cortex was reached. Receptive
 fields remained on the temporal side of the
 scotoma for several successive recording
 sites over 2 mm of cortex. Next, receptive
 fields jumped to the opposite side of the
 scotoma and remained stationary for several
 recording sites; they then resumed their
 normal progression for recording sites out-
 side the deprived zone. In addition, some
 recording sites (Fig. 1, sites d/e in row 4)
 had two receptive fields, one on each side of
 the scotoma. The responsiveness of neurons
 with new receptive fields was not notably
 abnormal (9). Both area 17 and area 18 were

 altered in this way, and comparable results
 were obtained in four cats with retinal le-

 sions of 5° to 10°.

 An example of how progressions of recep-
 tive fields for rows of recording sites differed
 in normal and reorganized cortex is shown
 in Fig. 2. In normal cortex, receptive field
 centers shift systematically as recording sites
 progress across the retinotopic representa-
 tion in area 17. In contrast, receptive fields
 for recording sites over a considerable tan-
 gential distance in cortex can have nearly the
 same receptive field center in reorganized
 cortex.

 In two other cats, larger retinal lesions of
 10° to 15° in diameter produced a larger
 zone of deprived cortex. In these cases,
 neurons near the margin of the deprived
 zone of cortex had displaced receptive fields,
 but neurons in a 2- to 3-mm-wide center of

 the deprived visual zone of cortex were
 unresponsive to visual stimuli. Thus, large
 zones of deprived cortex may not completely
 reorganize.

 The present results (Fig. 1) indicate that
 portions of retinotopic cortical maps as large
 as 4 to 8 mm and encompassing 5° or more
 of the visual field can reorganize such that
 neurons within this cortex acquire receptive
 fields in new locations. Reorganization over
 such distances could result from changes in

 Fig. 1. Evidence for cortical reorganization from
 one case. Partial results are shown from a total of

 121 recording sites, of which 55 produced abnor-
 mally located receptive fields and were judged to
 be within altered cortex. Shown are normal (out-
 lined) and displaced (black) receptive fields for
 neurons at recording sites in areas 17 and 18 in a
 cat with a lesion of the retina of the right eye and
 enudeation of the left eye. Receptive fields were
 hand-plotted with projected, moving bars of light
 on a tangent screen or hemisphere (7). Some of
 the electrode penetrations producing mediolateral
 rows of recording sites are indicated by dots on a
 dorsolateral view of the brain on the upper right.
 The black region approximates the extent of the
 cortex where neurons had abnormally located
 receptive fields. Recording sites obtained from
 electrode penetrations of rows 4 and 5, including
 successive recording sites in penetrations extend-
 ing down the medial wall of the cerebral hemi-
 sphere in area 17, are lettered in the box, a to 1 and
 a to i, respectively. The solid line in the box marks
 the estimated border of areas 17 and 18, and the
 dashed line marks the dorsal edge of the medial
 wall. The receptive fields for the lettered record-
 ing sites for each row are indicated in the contra-
 lateral hemifield depicted below. The zero vertical
 and zero horizontal meridians are marked in

 degrees of visual angle, and the projection of the
 retinal lesion (scotoma) is shown. Abbreviations:
 AES, anterior ectosylvian sulcus; LS, lateral sul-
 cus; PES, posterior ectosylvian sulcus; and SS,
 suprasylvian sulcus. The normal organizations of
 areas 17 and 18 in cats are given in (1).
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 Fig. 2. Receptive field A B
 centers for recording
 sites in normal (A) and +10°- +10°-
 reorganized (B) parts of
 area 17. (A) Receptive
 field centers (a to f) sys-
 tematically progress to- QO 00
 ward peripheral vision def a-f
 for a row of recording f I
 sites (a to f, box) moving * * ^[
 away from the border of "
 areas 17 and 18 in a part -10°- -10°-
 of area 17 that had nor- ab d e t
 mal retinotopic organi- I 11 mm | l l 1 mm
 zation. (B) A similar row Cortical distance = 1446 gLm Cortical distance = 1589 gtm
 of recording sites in the
 part of area 17 that was deprived of normal activation by the retinal lesion produced an accumulation of
 receptive fields with nearly identical centers next to the blind area produced by the retinal lesion. In (A)
 and (B) horizontal and vertical meridians through the center of gaze are marked in degrees of visual
 angle in the visual hemifield contralateral to recording sites. Recording sites progress away from the
 border of areas 17 and 18 in area 17 (they are reversed from actual order in the left cerebral hemisphere
 for ease of matching the progressions of receptive fields and recording sites). The projection of the
 retinal lesion into the visual hemifield is in black.

 the effectiveness of synapses within the ar-
 bors of thalamocortical axons of previously
 existing inputs (10). Comparable results
 have been obtained by Heinen and Ska-
 venski (11) from part of area 17 of one
 monkey. Cortex with neurons initially unre-
 sponsive to visual stimuli after bilateral le-
 sions of the fovea later contained neurons

 responsive to visual stimuli. Results from
 visual cortex are similar to those obtained

 from somatosensory cortex of monkeys; re-
 moving the inputs from part of the hand
 produces a zone of altered cortex where
 neurons achieve new receptive fields of nor-
 mal sizes in other parts of the hand (4, 5).
 Furthermore, removing inputs from more
 than half of the hand produces a larger zone
 of deprived cortex where complete reactiva-
 tion does not occur (12).

 These results are important for at least
 two reasons. First, in certain ocular diseases
 in humans, lesions are commonly found in
 the retinas of both eyes, and retinotopic
 reorganization of visual cortex could result
 when lesions in the two eyes correspond to
 the same locations in visual space (13).
 Second, the present results, together with
 those from the somatosensory system, imply
 that basic neuronal properties such as recep-
 tive field location are maintained in a dy-
 namic state in sensory-perceptual systems of
 adult mammals. Such adult plasticity may be
 important, not only in recoveries from brain
 damage and adjustments to other impair-

 ments, but also in our abilities to maintain,

 alter, and improve sensorimotor and percep-
 tual skills.
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 were initially immobilized with ketamine hydrochlo-
 ride (20 mg/kg) and anesthetized with Fluothane
 and a mixture of 70% nitrous oxide and 30%

 oxygen. During the experiment, Fluothane was re-
 placed by the intravenous infusion of Surital. These
 cats were paralyzed with an intravenous mixture of
 gallamine triethiodide (5 mg/kg per hour), d-tubo-
 curarine (0.5 mg/kg per hour), atropine, and saline
 and were artificially respired. Both procedures pro-
 duced similar results. The expired CO2, blood pres-
 sure, electrocardiogram, and electroencephalogram
 were continuously monitored. Cycloplegia was
 maintained with 10% Neo-Synephrine and atropine
 sulfate, and the corneas were protected with gas-
 permeable contact lenses of appropriate curvature.
 The optic disc and the area centralis were projected
 onto a translucent plastic hemisphere or tangent
 screen. Much of the visual cortex of the dorsal

 surface of the brain was exposed, and the brain was
 protected in a chamber filled with silicone fluid. The
 exposed area was photographed with a scale to later
 record mapping sites and the sequence of mapping
 during the experiment. The surface pattern of blood
 vessels was used as a reference for establishing the
 position of each penetration. Recordings were made
 with low-impedance tungsten microelectrodes from
 clusters of neurons, and projected bars of light
 served as stimuli. Successive recording depths along
 penetrations down the medial wall were measured
 from the surface and from small electrolytic marker
 lesions placed along penetrations.

 9. The response characteristics of recorded neurons
 were not quantitatively determined, but responses to
 moving bars of light appeared to be similar for
 neurons in and outside of the deprived zone of
 cortex.

 10. Terminal arbors ofthalamocortical axons in areas 17

 and 18 of cats range from 1 to 3.5 mm in tangential
 width of distributions [A. L. Humphrey, M. Sur, D.
 J. Uhlrich, S. M. Sherman, J. Comp. Neurol. 233,
 159 (1985); ibid., p. 190. Tangential axon collaterals
 of cortical neurons [C. D. Gilbert and T. N. Wiesel,
 Nature 280, 120 (1979)] could also play a role.

 11. S. J. Heinen and A. A. Skavenski, Invest. Ophthalmol.
 Visual Sci. 29 (suppl.) 23 (1988).

 12. J. T. Wall and J. H. Kaas, Brain Res. 372, 400
 (1986).

 13. For example, patients who develop bilateral macular
 degeneration typically experience a permanent cen-
 tral scotoma of varied sizes. These patients use an
 eccentric retinal locus outside the scotoma for fixa-

 tion, suggesting that such retinal areas act like a
 newly developed fovea for resolving spatial details
 [G. K. von Noorden and G. Mackensen, Am. J.
 Ophthalmol. 53, 642 (1962); G. T. Timberlake et al.,
 Invest. Ophthalmol. Visual Sci. 27, 1137 (1986); G.
 T. Timberlake, E. Peli, E. A. Essock, R. A. Augline,
 ibid. 28, 1268 (1987)].

 3 October 1989; accepted 31 January 1990
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