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Glossary

analogous
Baldwin effect

cortical domain
cortical field
cortical field
magnification
evolvability
genetic
assimilation
homologous

homoplaseous

module

pleiotropy

Having the same function.

The ability of an animal to respond
optimally to a given environment.
The portion of cortex devoted to a
given sensory systen.

The fundamental organizational fea-
ture of the cortex.

The amount of cortex within a corti-
cal field devoted to processing inputs
from a behaviorally relevant body
part is enlarged.

The ability of an organism to gener-
ate heritable, selectable phenotypic
variation.

How an environmentally induced
phenotypic characteristic becomes
genetically coded in a population.

A characteristic inherited from a
common ancestor.

An independently evolved character-
istic that looks the same across
species.

Smaller units of organization within a
defined cortical field.

A single gene controls numerous
activities during development result-
ing in-various phenotypic effects in
the adult organism.

23.1 Introduction

Examination of a number of different mammalian

brains

demonstrates

that Dbrain organization,

particularly the neocortex, varies dramatically across
species. This variation in neocortical organization is
accompanied by a considerable degree of behavioral
diversity, Specifically, differences in cortical sheet
size, organization, number of cortical fields, and con-
nections are associated with differences in sensory,
perceptual, cognitive, and motor abilities. How these
differences in neocortical organization in mammals
arise in evolution and how these alterations generate
variable behavioral repertoires are difficult questions
to investigate directly because the evolutionary pro-
cess is highly dynamic, and alterations to the brain
occur over hundreds of thousands to millions of
years. Despite the fact that evolution cannot be stu-
died ‘head on’, we can circumvent the problems
assoclated with studying evolution in two ways.
First, we can examine the products of evolution,
namely extant mammals, and compare their brain
organization, to make inferences about the evolu-
tionary process. Alternatively, we can study the
developmental processes that generate different
aspects of brain organization, since the evolution of
the neocortex is the evolution of the developmental
mechanisms that give rise to adult phenotypes. We
can then postulate how developmental mechanisms
may have been altered to produce different pheno-
types (see The Origin of Neocortex: Lessons from
Comparative Embryology).

The use of the comparative approach has led to
number of important insights regarding brain evolu-
tion. Likewise, studies of development, particularly
recent molecular studies, have provided much
needed information on the genes that are involved
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cortical field location, size, and connectivity. The
‘nurture’ side of the debate has also become more
experimentally tractable, and questions regarding
the activity-dependent cellular mechanisms that
alter aspects of development including the expres-
sion of genes, regulation of synaptic morphology
and function, and dendritic and axon growth are
now being examined. The problem is that in some
instances it is difficult to draw a distinct line
between genetic and epigenetic contributions to the
phenotype, and the two become intricately
intertwined.

23.3.1 Nature: The Contribution of Genes to
Cortical Field Development

Understanding how genes control cortical field
development can be broken into three broad cate-
gories. First, there are several genes that are intrinsic
to the neocortex which control specific aspects of
cortical development. The expression of these genes
occurs in the normal developing system, and their
action is independent of neural activity. Second, the
expression of some genes in the central nervous
system is induced by activity and requires feedback
from the developing system to become activated.
Finally, there are genes that regulate aspects of the
body plan and peripheral morphology that contri-
bute  substantially to aspects of cortical
organization.

23.3.1.1 Activity-independent genes intrinsic to the
neocortex Recent work indicates that genes
intrinsic to the neocortex, or the developing ven-
tricular zone, control a number of aspects of
cortical development, all of which have a large
impact on the organization and function of the
neocortex in the adult phenotype. Some examples
include the regulation of the size of the cortical
sheet, cortical field coordinates in the rostrocaudal
and mediolateral axis, and thalamocortical
connectivity.

In terms of the overall size of the cortical sheet,
studies on cell cycle kinetics of neocortical progeni-
tor cells in the ventricular zone indicate that the size
of the cortical sheet is intrinsically regulated and
that there are a number of plausible ways in which
this regulation can occur. In general terms, the num-
ber of cells in the developing ventricular zone can be
increased by extending the length of time that cells
undergo symmetric divisions, and/or the rate at
which cell divisions occur. A comparative analysis
of small-brained mammals, such as mice, and large-
brained mammals, such as macaque monkeys, indi-
cates that cortical neurogenesis is both prolonged

and accelerated in macaque monkeys compared to
mice (Kornack and Rakic, 1998; Kornack, 2000).
Several hypotheses regarding the specific genes and
proteins involved in this process and the types of
alterations to the kinetics of division have recently
been proposed. For example, ‘beta~catenin’ is an
intracellular protein that is expressed in neuroe-
pithelial precursor cells during neurogenesis
(Chenn and Walsh, 2002). In transgenic mice that
over express a form of this protein, the size of the
neocortex increases dramatically. This massive
increase in the size of the cortical sheet is due to an
increase in the proportion of progenitor cells that
re-enter the cell cycle and continue mitotic division.
Another gene proposed to alter cell cycle kinetics is
Brain Factor-1 (BF-1 or Foxgl). This gene is
expressed in telencephalic progenitor cells (Tao
and Lai, 1992), and regulates cell proliferation and
differentiation in the developing neocortex
(Hanashima et al., 2002). BF-1 is regulated by
FGF2, which is also involved in regulating cortical
sheet size by determining the number of cycles of
division that progenitor cells undergo during cor-
tical neurogenesis. For example, injections of
FGF2 into the ventricle of embryonic rats results
in a substantial increase in cortical volume
{Vaccarino et al., 1999), and FGF2 knockouts
have smaller neocorticies (Raballo et al., 2000).
These studies indicate that the disproportionate
size of the neocortex in different linecages could
be regulated in several ways by different genes
that affect the kinetics and timing of cell division
in the ventricular zone.

Related studies of cell cycle kinetics in mon-
keys indicate that primary areas, such as V1, may
be specified very early in development, during
neurogenesis. For example, in primates, V1 is
characterized by an increase in cell density and
laminar complexity compared to other cortical
areas, and compared to other mammals. In devel-
opment, the rate of production cells in the
ventricular zone is higher in the region where
V1 will ultimately reside than in other regions
{(DeHay et al., 1993). Differences in laminar his-
togenesis for different regions of the ventricular
zone have also been observed in mice (Polleux
et al., 1997). These studies indicate that areal
differences arise very early in neocortical devel-
opment, well before thalamic innervation of the
Neocortex occurs.

In addition to intrinsic mechanisms that operate
during cortical neurogenesis to specify cortical
fields, recent work indicates that somewhat later in
cortical development, the transcription factors
Emx2 and Pax6 are involved in the expression and
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patterning of downstrcam genes in the rostrocaudal
axis of the neocortex, and potentially even cortical
field size. For example, experiments in which these
genes are deleted result in shifts of downstream
genes such as Cad8 and Cadé6 cither rostrally (for
Emx2 deletion) or caudally (for Pax6 deletion;
Bishop et al., 2000). In addition to the observed
changes in gene expression, Emx2 and Pax6
mutants also exhibit alterations in thalamocortical
connectivity. In experiments in which Emx2 is
deleted and the neocortex is rostralized (e.g., rostral
cortical fields are shifted caudally), cortex at the
caudal pole that would normally receive thalamic
input from the LGN receives inputs from the ventral
posterior nucleus (VP) (which normally projects to
somatosensory cortex rostral to this region; Bishop
et al., 2000). Furthermore, mice in which Emx2 is
overexpressed have a significantly larger V1 than in
normal animals (i.e., cortex has been caudalized;
Hamasaki et al., 2004).

In terms of connectivity, some of the cadherins
appear to regulate thalamocortical connectivity. For
example, Cadé6, 8, and 11 are expressed in unique
subsets of thalamic afferents (Suzuki ez al., 1997;
Korematsu and Redies, 1997). Further, Cadé6 is co-
localized with the synaptic marker, synaptotagmin,
and is correlated with the formation of synaptic
connectivity between a source and its target in the
developing nervous system (Inoue et al., 1998). The
ephrins have also been proposed to play a role in
thalamocortical development. While their presence
in locations extrinsic to the neocortex, such as the
ventral telencephalon, serves a role in gross topo-
graphic guidance, they appear to intrinsically
mediate the refinement of thalamocortical connec-
tivity within a cortical field (see Vanderhaeghen and
Polleux, 2004 for review). For the development of
cortical connections, recent work has demonstrated
that FGF2, which may be regulated by Emx2, is
involved in guiding (modulating) corticocortical
connections (Huffman et al., 2004). Thus, the tran-
scription factor Emx2 controls a genetic cascade
involved in structure formation, location, and
connections.

It is important to note that evolutionarily, this
type of regulation of events imposes formidable
constraints on the developing and evolving ner-
vous system. Given the -constraints imposed by
such a contingent system, it seems inevitable that
very small changes in the timing and spatial dis-
tribution via base substitutions, recombination,
and transposition, for example, of any one of the
genes involved in these aspects of cortical field
development can have a very large effect on the
phenotype.

As mentioned earlier, a recent perspective on how
cortical fields should be defined is to consider the
subdivisions or areas of the neocortex from a spa-
tiotemporal perspective. In this view, cortex is
examined over time as a series of coordinated pat-
terns of gene expression which are thought to be
involved in generating features of the ncocortex
that will ultimately be realized in the adult, such as
cortical layering, architecture, transmitter utiliza-
tion, and connectivity. While this perspective is
certainly important from both a developmental
and evolutionary perspective, it may not be appro-
priate to define a cortical field in terms of the
patterns of gene expression exhibited early in
development for two reasons. First, the direct
relationship between a functionally defined corti-
cal field and some pattern or patterns of gene
expression has yet to be established. Second, in
the neocortex, early patterns of gene expression
often represent potential, while®the adult form
directly generates the behavior that is the target
of selection.

23.3.1.2 Activity-dependent regulation of genes
that control aspects of cellular morphology,
connection, and function In addition to the
genes we described above, a number of studies
describe intracellular, molecular mechanisms that
are driven and regulated by neural activity, and
generate changes in the temporal expression of
genes within a cell employing these mechanisms.
Altering the expression of genes can change
aspects of synaptic morphology. For example,
recent work demonstrates that increases in intra-
cellular calcium, due to changes in neuronal
activity, trigger a cascade of events, including the
activation of the cAMP pathway and phosphore-
lation of CREB, which binds to the regulatory
region of a gene and induces transcription of
genes (see Finkbeiner and Greenberg, 1998; West
et al., 2001 for review). There are several different
types of molecules which are regulated by activity,
and which in turn are involved in synaptic model-
ing during development. One of these is a class of
proteins called neurotrophins. These proteins are
relevant to the discussion above because their
levels and secretion are regulated by activity,
they are expressed in synapses, and they regulate
morphological changes in both the pre- and post-
synaptic elements (McAllister et al., 1995, 1999;
Lein et al., 2000; McAllister, 2001 for review).
Neurotrophins such as brain-derived neurotrophic
factor (BDNF), nerve growth factor (NGF), and
neurotrophic factor 4/S (NT4/5) play a number of
important roles in nervous system development
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