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Technology in the areas of artificial intelligence, cognitive systems, and robotics has already 
made many significant advances. We have constructed bipedal robots that walk and run, quad-
rupeds that negotiate uneven ground, cars that drive themselves, and micro- scale hover- bots 
that fly in formation. We have developed sensing systems that read hand- writing, recognize 
faces, and parse human speech; and we have devised planning, reasoning, and inference sys-
tems that integrate terabytes of information to coordinate traffic, handle the logistics of large 
organizations, optimize complex financial transactions, and mine scientific data sets. In some 
areas we are close to mimicking the achievements of biological systems, in others we have 
already outstripped them. But we are reaching a limit in the design of these systems and this is 
reflected in their brittleness in the face of unexpected challenges and the increasing difficulty 
and cost of updating these systems to keep pace with the changing world. “Evolvability” is 
therefore recognized as an important challenge for the design of complex artifacts (Lehman 
and Belady 1985; Mannaert et al. 2012) and technologists have been inspired by biological sys-
tems to make artificial systems that are more dynamic and evolvable (Fortuna et al. 2011; Le 
Goues et al., 2010).

But what can we learn from nature about evolvability? In the biological sciences, evolution has 
traditionally been considered through the lens of selection— preferring organisms that thrive 
over ones that fail. Selection is inarguably one of the most powerful mechanisms operating 
in biology that has made possible the evolution of complex organisms with rich repertoires of 
behavior. However, selection can only work if there is suitable variation within the population 
from which to select. Put it another way, whilst selection is the mechanism through which evo-
lution operates it is not what makes organisms evolvable. The study of biological evolvability 
points to the sources of natural variability (e.g. Figure 8.1) as critical to understanding and rep-
licating the power of natural evolution (Carroll 2012; Kirschner and Gerhart 2006).

A general definition of biological evolvability (e.g. Wagner and Altenberg 1996) might con-
sider two sources of variability in the population. The first is concerned with how gene sequences 
vary within a population to give rise to variations in phenotype. Mechanisms that affect this 
form of variability include processes that directly alter chromosomal DNA such as mutation, 
crossover, and recombination, as well as population effects such as migration, translocation, and 
so forth. A second important source of variability, less widely known, derives from the develop-
mental processes through which this genetic infrastructure produces a specific phenotype, as 
beautifully illustrated by the differences in patterning of the butterfly wings in Figure 8.1. This 
kind of phenotypic diversity does not require variability in the underlying gene sequences but 
instead relates to variation in the way that genes are expressed during development.
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To understand variability due to development we first have to appreciate that genes do not specify 
the organism directly— rather, there is a rich set of mechanisms operating inside the cell and across 
the embryo that, amongst other things, determine how genes are transcribed into proteins and 
messenger molecules, and the probability with which they are transcribed. The operation of these 
epigenetic mechanisms determines whether any given cell becomes a neuron or a white blood cell, 
and they resolve the mystery of how bodies can form that have a myriad of different parts despite 
the fact that all cells share the same DNA. Developmental biologists have now dissected many of the 
underlying molecular mechanisms that regulate gene expression. Interestingly, we are now realiz-
ing that these mechanisms can also be affected by the environment, within and outside the embryo, 
in a manner that can produce non- genetic (epigenetic), but heritable, trans- generational change.

In recent decades the evo- devo— evolutionary and developmental— approach (see, e.g. Carroll 
2012; Muller 2007) has become central to our current understanding of biological evolvability. 
A key starting pointing was the discovery that similar networks of regulatory genes underlie 
body patterning in all modern multi- celled animals from sea urchins to humans (see Figure 8.2 
and Raff 1996; Swalla 2006). This surprising finding demonstrated the flexibility of these net-
works to generate different body plans and also drove the realization that the manner in which 
genes determine phenotypic outcomes depends on multiple interactions across different organi-
zational levels— the adult organism is the outcome of a series of genetic cascades modulated in 
time and space by the wider embryological, bodily, and environmental context. Selection can 
operate on phenotypic variability that arises at any stage in this process.

What we have also learned since these remarkable discoveries is that the toolbox of the genetic- 
developmental system is both sensitive to small changes and yet remarkably robust. For example, 
slight alterations in the spatial and temporal patterning of gene expression can lead to large changes 
in the developmental outcomes, as we illustrate with respect to nervous system evolution below. 

Figure 8.1 Variability in natural systems. Understanding how evolution operates requires that we 
go beyond the processes that allow selection of genetic material and decode the mechanisms 
that give rise to variation. For example, the stunning variety of patterns in these butterfly wings 
is thought to arise through changes in the way that regulatory gene networks operate without 
requiring any changes in the underlying gene sequences.
Reproduced from Proceedings of the National Academy of Sciences of the United States of America, Emerging principles 
of regulatory evolution, 104 (Supplement 1), pp. 8605– 8612, Figure 1, doi:10.1073/ pnas.0700488104, Benjamin 
Prud’homme, Nicolas Gompel, and Sean B. Carroll, Copyright (2007) National Academy of Sciences, USA.
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However, at the same time, the wider system is able to respond flexibly to these shifting patterns in a 
manner that still results in a viable organism. This takes us far from traditional notions of evolution 
as exploring random changes in form. Understanding how developmental dynamics resists damag-
ing perturbations and promotes convergence to viable outcomes could allow us to crack the puzzle 
of biological evolvability and uncover principles that can be usefully applied to artificial systems.

Our particular interest is in understanding the evolution and development of one specific 
complex biological system— the mammalian brain and nervous system— and in the possibility 
of designing brain- like adaptable architectures that could control biomimetic robots. In the 
next section, we give some additional consideration to particular mechanisms involved in brain 
evo- devo and to the evolutionary history of brains including our own. In the third part of the 
chapter we then explore how the principles underlying natural evo- devo have inspired, and are 
continuing to inspire, the design of artificial living machines.
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Figure 8.2 The evo- devo of biological systems. In the first half of the twentieth century 
evolutionary biology was dominated by a reductionist emphasis on the role of genes. A renewed 
interest in the contribution of development began with the discovery that the homeotic gene 
clusters, involved in body patterning in Drosophila, were strongly conserved across all multi- celled 
animals including vertebrates, despite obvious differences in the morphological outcomes they 
produced. This finding forced a re- examination of the role of developmental processes in specifying 
body and brain designs. This figure shows how the same regulatory gene cluster (Hox) is involved 
in specifying body patterning in all the different groups of modern multi- celled animals (our own 
species is a member of the class of tetrapods).
Reprinted by permission from Macmillan Publishers Ltd: Heredity, 97(3), Building divergent body plans with similar 
genetic pathways, B J Swalla, pp. 235– 243, Figure 6, doi:10.1038/ sj.hdy.6800872 Copyright © 2006, Nature 
Publishing Group.
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Evo- devo of the mammalian nervous system
As a control system becomes more complex, interconnected, and integrated, it becomes more 
likely that any structural variation will result in degraded function. So how did animal nervous 
systems retain the capacity to evolve as they became larger and more sophisticated? One answer 
is by avoiding over- specification of the system in the genome and by exploiting developmen-
tal mechanisms that, as we have discussed above, promote compensation for disruptive change 
(Deacon 2010; Katz 2011). More generally, evo- devo research in neurobiology is now beginning 
to identify the toolbox of developmental processes that can give rise to useful forms of variability 
in nervous system organization, recognizing that this set of mechanisms has itself been the target 
of strong selection pressure during evolution (Charvet et al. 2011).

The toolbox for brain evolvability
So what’s inside the toolbox for brain evolvability? First, like other developing systems the com-
plex wiring of the brain is the result of a much simpler (though still very complex!) set of growth 
rules, implemented through genetic cascades, and interacting within a self- assembling struc-
ture, first over- specifying and then using intrinsic mechanisms, such activity- based pruning, 
to sculpt out useful network topographies. One set of tools thus relates to the generative, or self- 
organizing, mechanisms that permit the brain to wire during early development by tuning in to 
internal neural signals (see also Wilson, Chapter 5, this volume). The system is first directed to 
incoming sensory signals, and then to the correlations between inputs from different modalities 
(see e.g. Krubitzer and Kaas 2005).

Second, there is a set of tools that instantiate adaptive mechanisms (which in this chapter we 
use to mean those involved in learning as opposed to general adaptation). Learning operates to 
promote the selection of circuits that support behavioral capacities that are well matched to the 
environment in which the individual develops. The development of cortical areas, for instance, is 
driven in significant part by specific patterns of incoming sensory inputs that can support tasks 
such as object recognition and detection, decision- making, path- planning, and motor control. 
These circuits are continually modified and honed by experience in the world, using different 
forms of internal and externally- mediated feedback (see Herreros, Chapter 26, this volume).

A third set of tools relates to systems components and architectural principles as discussed in 
Sections Four (building blocks) and Five (capabilities) of this book. For example, oscillators that 
can create patterned rhythms, decision circuits that can resolve competitions, and sensorimotor 
circuits that can implement predictive control. Architectural principles include layered control 
whereby lower tier pathways that link sensing with action can operate in the absence of higher 
ones (Prescott et al. 1999), and redundancy, where multiple substrates provide alternative means 
to support a given function (Deacon 2010). These architectural features create robustness and 
thus provide protection against catastrophic local change— smoothing out the fitness landscape 
by providing more options for exploring useful variability (Kauffman 1990). An important 
feature that we see in brain evolution, and that can underlie layering and redundancy, is the 
duplication of existing structures. Making copies of working sub- circuits can lead to system 
components that are under- used and that can then adjust to take on new functions (Deacon 
2010; Whitacre and Bender 2010).

From phenotypic variability to hopeful monsters
Biologists have long been puzzled by the difficulty of reconciling rapid changes in animal lineages with 
the notion of gradual change brought about by genetic operators such as mutation. In the 1940s, the 
biologist Richard Goldschmidt coined the phrase “hopeful monster” (Goldschmidt 1940) to capture 
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the idea of an organism that represented a large leap in design- space (also termed macroevolution). 
This idea was deemed controversial by many biologists of the day who reasoned that any change in 
the genome that brought about a radical reorganization of the organism would be likely to be lethal. 
Nevertheless, evolution does seem to have proceeded by taking a number of larger steps in addition 
to many smaller ones. How might this be possible? Evolvability again appears to be key and the new 
understanding engendered by the evo- devo approach is resurrecting Goldschmidt’s hopeful monster 
hypothesis. Specifically, genetic mutations, or consistent non- genetic departures from normality, that 
bring about radical changes can be compensated for by pattern- forming processes that steer devel-
opment towards building a viable animal. Moreover, where a single population is affected by a sig-
nificant disruptive event, such as abrupt environmental change, similar changes might be triggered in 
multiple individuals. Where this happens successful large strides within design space could be made.

We can illustrate this idea using studies of brain evolution that show a number of dramatic 
changes in the size and organization of the mammalian cortex through evolutionary history, 
perhaps most remarkably, in terms of speed of change, in the sequence of primate and hominid 
forms leading to modern humans. This is illustrated in Figure 8.3 which shows approximate 
shape and areal structure of the cortex in different groups of modern mammals.

Experimental manipulations in brain development are beginning to suggest how such changes 
may have come about. For example, Chenn and Walsh (2002) have shown that the impact of a single 
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Figure 8.3 Cortical evolution in mammals. The major mammalian groups and their family 
relationships illustrating how the shape of the cortical mantle, and of some of its primary sensory 
areas, vary relative to an inferred common ancestor.
Reproduced from Proceedings of the National Academy of Sciences of the United States of America, Cortical evolution 
in mammals: The bane and beauty of phenotypic variability, 109 (Supplement 1), pp. 10647– 10654, Figure 1, 
doi: 10.1073/ pnas.1201891109, Leah A. Krubitzer and Adele M. H. Seelke, Copyright (2012) National Academy of 
Sciences, U.S.A.
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change in the sequence of developmental events involved in early neurogenesis in the mouse can 
lead to a change from a smooth rodent- like neocortex to a convoluted primate- like one, bringing 
about an expanded cortical surface without an increase in thickness. Although these particular 
mice have brain abnormalities that make them non- viable, what is impressive is that the over- 
production of neural progenitor cells triggers changes later in the developmental cascade that at 
least partially compensate for this perturbation (see Rakic (2009) for further discussion). This study 
demonstrates that changes that occur early in development can have particularly profound effects 
(thus larger strides). Other experiments, summarized by Krubitzer and Seelke (2012), have used 
knock- out mice to explore the role of different transcription factors in regulating arealization— the 
size, shape, and position of different cortical areas. As illustrated in Figure 8.4, eliminating any one 
of the four factors Emx2, COUP- TF1, Pax6, or Sp8 radically alters the size and shape of multiple 
fields— enlarging some, reducing others, whilst preserving their overall topological relationships.

In a final illustrative experiment, by Fukuchi- Shimogori and Grove (2001), an electrically 
induced overexpression of a growth factor in a specific locus in the mouse forebrain caused the 
animal to develop a second complete barrel field (a representation of the facial whiskers) that 
was a mirror- image of the normal one. This result indicates the relative ease with which develop-
mental processes can generate useful redundancy in the form of substantial and well- organized 
structures that can then be co- opted to serve new roles.

Krubitzer and Seelke (2012) summarize the main differences in mammalian cortex that can be 
observed by comparing across species, as shown in Figure 8.3. These include (i) the size of the cortical 
sheet, (ii) the relative amount of space allocated to different sensory domains (and more generally, to 
the different cortical fields), (iii) cortical magnification of behaviorally relevant body parts, (iv) the 
addition of new modules, (v) the overall number of cortical fields, and (vi) the connections between 
cortical fields. Interestingly, many of the same changes can be seen when comparing between indi-
viduals of a given species but to a much less dramatic extent than when comparing across species. 
This illustrates that the phenotypic variability required to allow selection to direct cortical evolution 
in any of these different directions may be present in most species most of the time.
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Emx2 KO COUP-TF1 KO Pax6 KO Sp8 KO

Emx2 COUP-TF1 Pax6 Sp8

Figure 8.4 The effect of removing specific transcription factors (via genetically- modified ‘knock- 
out’ mice) on arealization in mouse cortex. The size and shape of major cortical areas— primary 
visual (v1), auditory (a1), somatosensory (s1), and motor (m1) cortices— is radically disrupted by each 
knock- out whilst the overall topology is maintained.
Reprinted from Current Opinion in Neurobiology, 18 (1), Dennis D. O’Leary and Setsuko Sahara, Genetic regulation of 
arealization of the neocortex, pp. 90– 100, Figure 6, doi: 10.1016/ j.conb.2008.05.011, Copyright © 2008, Elsevier Ltd., 
with permission from Elsevier.
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Conservation of basic design principles
Whilst exploring the paths to effective change through biological evolution it is also important 
to recognize that some things have stayed the same. Indeed, the story of biological evolution can 
be regarded as one of conservation of basic design principles, that were discovered early on, and 
that instantiated evolvable control architectures (Kirschner and Gerhart 2006). For example, 
fossil evidence shows a remarkable explosion of animal forms during the Cambrian period 
(~541– 485 million years ago) in which all of the major bilaterian phyla were represented, des-
pite being absent, for the most part, from the fossil record at the end of the previous Ediacaran 
period (see also Prescott, Chapter  38, this volume). Current hypotheses suggest that the last 
common ancestor of all modern bilaterian animals, the Urbilateria, evolved some time before 
the Cambrian boundary, and is thought to have possessed the “essential bilaterian toolbox” 
(Erwin and Davidson 2002)  of regulatory genes, including the homeotic gene clusters that 
underlie cell differentiation and body patterning in all modern bilaterians (as in Figure 8.2). 
Vertebrate- like animals also appear earlier than was once thought— finds from Chengjiang in 
China (the Chinese “Burgess shale”) show the presence of fish- like creatures (craniates) in the 
early Cambrian (Mallatt and Chen 2003). This evidence implies a rapid evolution of complex 
nervous systems, as part of the general evolution of new body plans (Gabor Miklos et al. 1994).

Analysis of comparative brain architecture indicates some startling conservation of nervous 
system structure across all vertebrate classes. Notably, all vertebrate brains comprise a layered 
architecture with spinal, hindbrain, midbrain, and forebrain components; an integrative core, 
comprised of the medial reticular formation and the basal ganglia; and a number of specialized 
learning/ memory systems— hippocampus, striatum, cortex, and cerebellum (Prescott et al. 1999). 
Of course there have been considerable changes in the size, shape, number of sub- divisions (par-
cellation), and microstructural organization of many brain regions, as well as the addition of new 
cell types, and the migration of cell clusters within the brain. Connectional changes have included 
axonal invasion of new areas and increased differentiation of local areas through selective con-
nection loss. Nevertheless, comparative neurobiology indicates that the scope for alteration of 
the basic vertebrate brain plan may be remarkably limited (Charvet et al. 2011). Vertebrates have 
a control architecture that is evolvable but only within a set of constraints that were already laid 
down within the nervous system of a 500 million- year- old fish. If we could better understand this 
constrained but evolvable architecture— that carried generations of owners from sea to land, from 
four legs to bipedal walking, into the air, even to explore space— this should make for a powerful 
model for the design of artificial living machines.

Biomimetic and biohybrid systems
To learn from the evo- devo of natural systems it is clearly necessary to identify, simulate, and 
abstract the evolutionary and developmental mechanisms that gave rise to their evolvable nature. 
This approach could result in a toolbox of generative, adaptive, and selective mechanisms that can 
be used to formulate a design methodology to be applied to complex bio- inspired systems. Such a 
framework will also require an abstracted understanding of body plans and control architectures 
since it is clear that evolution acts to select evolvable and flexible control systems and then oper-
ates within some limits determined by those designs (and by the laws of physics).

In computational neuroscience, artificial intelligence, and robotics, researchers have explored 
generative methods, such as self- organization, or selective methods, such as genetic algorithms 
and genetic programming, and adaptive methods, such as reinforcement and supervised learn-
ing, for several decades. A smaller, but still significant, community have investigated how gener-
ative, selective, and adaptive mechanisms, or some combination of these, can operate together. 
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Much of this literature has followed a biomimetic approach. There is insufficient space here to 
provide a comprehensive review, therefore we briefly survey the history of this field and high-
light some examples that were particularly groundbreaking or insightful.

Foundations of artificial evo- devo
The attempt to create artificial systems using the methodologies of evolution, development, and 
learning is driven by the recognition that engineered systems cannot match either the complex-
ity or the robustness of biological life, and moreover, that nature has invented some remark-
able techniques for encapsulating the specification for such complex entities in highly compact 
codes. For example, the human brain is estimated to have 100 trillion neural connections and 
yet our genome has less than 30,000 active genes. One of nature’s most important tools, then, is 
this indirect but superbly productive mapping of the genome onto the phenotype.

One analogy that occurs repeatedly is that of a language— with a small vocabulary, and a 
clutch of grammatical rules saying how words can combine, a language can generate millions 
of varying but valid sentences. In computer science, the productivity of a formal language, 
defined as set of rules that operate over an identified set of symbols, has been understood since 
Chomsky’s work in the 1950s, and this general idea was first applied to model biological devel-
opment by Lindenmayer (1968) to make branching shapes similar in structure to threads of 
algae (e.g. Figure 8.5). This approach, now known as L- systems (a contraction of Lindenmayer- 
systems), continues to be widely used. For instance Torben- Nielsen et  al. (2008) describe a 
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Figure 8.5 A plant- like structure generated by an L- system grammar for modeling biological 
development.
Reprinted from Journal of Theoretical Biology, 18(3), Aristid Lindenmayer, Mathematical models for cellular interactions 
in development I. Filaments with one- sided inputs, pp. 280– 99, doi: 10.1016/ 0022- 5193(68)90079- 9, Copyright © 
1968, Elsevier Ltd., with permission from Elsevier.
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modeling system, EVoL- Neuron, that builds models of single neuron arborization, using genetic 
algorithms to tune these to match experimentally measured cells.

The L- systems approach was also generalized by Kitano (1990) to the construction of artificial 
neural networks. Whereas Lindenmayer’s goal was to show that a small grammar could give rise to 
differentiated and life- like structures, Kitano sought to demonstrate a specific advantage, in terms 
of coding efficiency, of a grammar- based system compared to a more direct encoding approach. 
Moreover, Kitano used L- systems in combination with selective (genetic algorithm) and adaptive 
(back- propagation) methods, that is, as part of a toolbox approach, and sought to show that this 
combination of methods could be usefully applied to difficult computational problems (he chose 
decoding, a classic problem in computer science). Kitano demonstrated that, compared to a direct 
encoding approach, a grammar- based generative model converged faster and scaled better as the 
size of the target network increased— a clear win for evo- devo. He also showed that larger networks 
could be specified without growing the size of the genetic coding— a path to concise and scalable 
developmental codes for specifying useful artificial complex systems was beginning to emerge.

Whilst grammars beautifully capture some of the power of a compact encoding to recursively 
express a developmental program, it is not obvious how such a system can map onto the chemi-
cal and mechanical systems inside the cell. Historically, two other approaches have provided 
important leads.

The first begins with Turing’s (1952) paper on the chemical basis of morphogenesis (the devel-
opment of body form). Now seen as a foundational paper for understanding self- organizing sys-
tems in general (see Wilson, Chapter 5, this volume), Turing was particularly concerned with the 
question of how the genes of a fertilized egg enable it to develop into a multicellular organism 
with asymmetric differentiated structure. Drawing on the idea that development can be guided by 
diffusing chemicals, that he termed morphogens, Turing provided a mathematical model of inter-
acting chemical gradients, termed reaction- diffusion processes, that could create elegant patterns 
such as dappling, stripes, and whorls. Models based on Turing’s idea are able to capture some of 
the more analog and non- local character of processes that happen inside the developing organism. 
For instance, Lewis (2008) reviewed half a century of work, building on Turing’s idea, that has 
used mathematical models to understand the role of chemical gradients in gene expression, with 
examples from patterning in plant meristems to the dorsoventral organization of frog embryos. 
Fleischer and Barr (1994), in following a toolbox approach, combined reaction- diffusion modeling 
based on differential equations with a grammar- based model of growth through cell- division and 
a mechanical model of cell- to- cell interactions to create a 2D model of a developing cell sheet. The 
resulting system produced rich life- like patterns, such as those illustrated in Figure 8.6, that have 
found applications in areas such as computer graphics. For a contemporary toolbox for synthetic 
development capable of defining multicellular “soft robots” see Doursat and Sánchez (2014).

A third starting point was the realization that chromosomal DNA, and the chemical processes 
that surround it, instantiate a rich dynamical system with compressed degrees of freedom and 
emergent order, and for which it might be possible to define a simpler analog with similar dynam-
ical properties. Kauffman (1969a, 1969b) attempted just this using randomly wired Boolean 
networks as models of regulatory gene systems. He showed that, given the right degree of con-
nectivity between network nodes, a Boolean network of a size mapped to a specific animal gen-
ome will enter dynamically stable states that can predict the number of cell types in that organism, 
behavior cycles that can predict cell division times, and responses to noise that look like behavior 
switching. That Boolean networks could be a useful abstraction of regulatory gene systems was 
further demonstrated by Dellaert and Beer (1996) who embedded one within a model cell, and 
used the state of the network, as it varied over time, to regulate cycles of cell division and dif-
ferentiation. Using a genetic algorithm to configure the initial network, they were able to grow 
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multicellular 2D model organisms, with a mix of sensor and actuator cells, that could be evolved 
to follow curved lines. Dellaert and Beer also built a second model organism more closely mod-
eled on the chemistry of genetic regulatory networks; however, configuring such a model to be 
evolvable proved to be less tractable than for the simpler Boolean system. The status of Boolean 
networks as simplified models of cellular regulatory networks is discussed in Bornholdt (2008), 
who argues that Boolean network dynamics can provide useful insights into how cells “compute.” 
Giacomantonio and Goodhill (2010) have applied Boolean networks to the problem of under-
standing the genetic regulatory networks underlying arealization in mammalian cerebral cortex, 
as shown in Figure 8.3, and involving all of the genetic transcription factors shown in Figure 8.4 
plus one more (Fgf8). Exhaustively simulating all possible network configurations of these five 
genes, they found that only 0.1% of possible networks could reproduce experimentally observed 
expression patterns. Moreover, the networks that worked tended to have certain kinds of within- 
network interactions and not others, thus giving clues as how these gene networks may operate 
during brain development.

Reviewing several decades of work, Stanley and Miikkulainen (2003) proposed a taxonomy 
of model evo- devo, or to use their term artificial embryogeny, systems that identified five major 
dimensions of design choice: (1) cell fate— the mechanism(s) through which cell type is deter-
mined; (2) targeting— how cells connect with each other; (3) heterochrony— how the timing of 
development events is regulated; (4) canalization— how systems are made robust to variation in 
the genotype; and (5)  complexification— how the genome (and the phenotype) become more 
complex over time.

Various further proposals have been made as to how these different design mechanisms can be 
abstracted from biological systems to lead to more compact and scaleable codings (and hence to 
improvements in evolvability). For example, Stanley (2007) has suggested that the core role of local 
interactions within developing organisms is to provide cells with information about their location 
in space. If so, a useful abstraction of the developmental process could be to provide an explicit 

Figure 8.6 Fleischer and Barr (1994) applied their developmental tool- box, inspired by Turing’s 
reaction- diffusion model and Lindenmayer’s L- systems, to the challenge of generating computer 
graphics such as these spheres coated with animal- like scales.
Reproduced from Fleischer, K. W. “A multiple- mechanism developmental model for defining self- organizing geometric 
structures,” Figure 7, PhD thesis, California Institute of Technology, Pasadena, 1995.
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coordinate frame allowing development at each location to be specified by the composition of a 
series of parameterized functions. This process can be visualized as a directed graph or “compos-
itional pattern producing network” (CPPN). Removing local interaction from the mix also allows 
this method to collapse time, that is to compute the final outcome at each location in a single step. 
Applying artificial evolution to CPPNs shows that they are flexible and evolvable ways of encod-
ing patterns that exhibit phenomena characteristic of natural developing systems such as sym-
metry and repetition with variation. Other approaches have explored the utility of redundancy, 
via duplication, of network components (Calabretta et al. 2000); still others have explored the ben-
efits of modularity within evolved controlled systems (e.g. Bongard 2002), and in the emergence 
of functionally distinct sub- networks in mammalian cortex (Calabretta 2007). Garcia- Bernardo 
and Eppstein (2015) have recently described an approach to complexification that involves prun-
ing dense model networks to find minimal configurations that retain required functionality, then 
using these more compact circuits as fixed building blocks within larger systems.

Many model systems have included adaptive mechanisms (learning) as a key step in building 
a working model organism (e.g. Sendhoff and Kreutz, 1999). Recognized as the “Baldwin effect” 
(see Wilson, Chapter 5, this volume), a learning capacity can make a system more evolvable 
by smoothing out the fitness landscape around peaks (if learning can reliably bring the model 
system to the fitness peak then it should be sufficient for evolution and development to place the 
system somewhere in the vicinity of the peak). Adding learning capacity is thus another means 
for reducing code- size for evolving systems whilst making good solutions easier to find (reduc-
ing search time). Of course, this comes at the cost of the time needed for lifetime learning and a 
period of reduced fitness while the system adapts.

Scaling- up
An important goal of research in artificial evo- devo has been to show that model solutions 
can be scaled to cope with real- world complexity. A useful stepping- stone for this has been the 
use of simulated 3D worlds that include real- time physics engines adapted from applications 
in computer graphics and gaming. A well- known example of this approach is Karl Sims (1994) 
“creatures.” Sims used genetic algorithms to select directed graphs (analogous to an L- system 
grammar) that specify solutions to the problem of being a digital creature built of collections of 
blocks, linked by powered flexible joints, and controlled by circuits. Sims evolved a neural net-
work control system for his creatures alongside their physical morphology and designed fitness 
functions for model aquatic and terrestrial environments that selected for proficiency at tasks 
such as swimming speed, swimming after a light source, moving across a surface, jumping on 
a surface, and attempting to possess a square block in contest with another creature— a model 
evolutionary arms race (see Figure 8.7). These experiments produced a fascinating array of crea-
tures, some with familiar morphologies and behavior reminiscent of that of actual animals such 
as snakes, tadpoles, or crabs. Others, often equally effective at their tasks, accomplished them 
with less familiar or bizarre patterns of movement and body- form. The resulting panoply of 
digital organisms has been compared to the Cambrian explosion of early life.

The success of Sims’ approach depended on the power of a generative encoding to build work-
ing model organisms out of parameterized simple elements (blocks), and the ability of genetic 
algorithms to exploit physics in a manner that simplified the challenge of control. Lipson and 
Pollack (2000) took this idea closer to physical reality by combining evolution in 3D simulation 
with additive manufacturing (3D printing) of physical robots for the most successful designs. To 
perform evo- devo in an actual physical system is more difficult, although some work in recon-
figurable robots is moving in this direction. For example, the Eyebot, shown in Figure 8.8, devel-
oped by Lichtensteiger and Eggenberger (1999) and modeled on the insect compound eye, applied 
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Figure 8.7 A simulated evolutionary arms race. Evolved artificial creatures fight for possession of a 
block in one of the experiments performed by Karl Sims (1994).
Reproduced from Karl Sims, Evolving virtual creatures, Proceedings of the 21st annual conference on Computer graphics 
and interactive techniques, pp. 15– 22, doi:10.1145/ 192161.192167 © 1994, Association for Computing Machinery, Inc. 
Reprinted by permission.

Figure 8.8 Eyebot (right), a reconfigurable robot inspired by the insect compound eye (left), 
designed to apply artificial evolution to robot morphology.
A: ©Denis Vesely/ Shutterstock.com B. Reprinted by permission from Macmillan Publishers Ltd: Nature, 406 (6799), 
Automatic design and manufacture of robotic lifeforms, Hod Lipson and Jordan B. Pollack, pp. 974– 978, Figure 5, 
doi:10.1038/ 35023115, Copyright © 2000, Nature Publishing Group.
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genetic algorithms to tune the position of model ommatidia; Gomez et al. (2004) extended this 
approach to a robot hand- eye system to explore parallel development of control systems and 
morphology (degrees of freedom) in a model of human hand- eye coordination. Most recently 
Vujovic et al. (in press) have used additive manufacturing, together with automated assembly 
using a robot arm, to evolve and grow robots with variable morphology, testing their ability to 
locomote across a flat arena.

Future directions
We are reaching a point in time where the widespread availability of super- fast computers, com-
bined with increased sharing of open source toolboxes, could allow a much wider community 
to get going with artificial evo- devo. On the other hand, a limiting factor is education— current 
approaches require mastery of a range of different tools and, if mining of biological principles is 
to be successful, understanding of one of the most daunting scientific literatures— developmental 
biology— with its complicated vocabulary and detailed data sets. To overcome these problems 
an emphasis on multi- scale modeling must continue (see Verschure and Prescott, Chapter 2, 
this volume) alongside interdisciplinary training opportunities for young scientists (see Mura 
and Prescott, Chapter 64, this volume).

The field of artificial evo- devo also has many territories still to explore. At the most funda-
mental level the identification of the principles required for living systems— such as being viable 
and self- sustaining— can be effectively explored through simulation (e.g. Agmon et al. 2016) in 
parallel with efforts to create new artificial living systems from organic chemistry (Mast et al., 
Chapter 39, this volume). At the other end of the complexity spectrum, there is also a commu-
nity seeking to apply this approach to the understanding of human development and cognition 
(Parisi 1997)  through the medium of embodied robotic modeling (e.g. Cangelosi et al. 2015; 
Metta and Cingolani, Chapter 47, this volume).

One strategy to take these methods into the real world is to try to circumvent some of the 
bottlenecks that have set limits to natural evolution, such as the need to compress the infor-
mation required to created new life- forms into a single cell, to limit inheritance to family 
lines, and to start each experiment afresh with a new organism built from that single cell. 
For instance, we can explore the retention of acquired adaptations, mimicking Lamarckian 
evolution (or memetic cultural evolution) (Le et  al. 2009), perhaps directly copying useful 
adaptations from one experiment to the next (much as biologists now do with genetic tools). 
As already noted, experiments can run in simulated bodies and worlds, where reasonably 
realistic model systems can now be simulated faster than real time. Model populations can 
be tuned to optimize evolvability, as theories of this improve, for instance by choosing addi-
tional selection criteria that promote phenotypic diversity (Lehman et al. 2016). For physical 
systems we can repeatedly adapt and re- use modifiable and modular robot hardware whilst 
taking advantage of auto- fabrication methods. Further, we can more effectively utilize our 
understanding of biological evolution to start with pre- structured models that are not created 
from scratch. Nature has identified many “forced moved and good tricks” (Dennett 1995) for 
the construction of animal bodies and of complex control architectures and conserves these 
as species evolve (Prescott 2007). We can identify design features that promote robustness 
and evolvability and either build these in from the beginning or promote them via selection 
criteria.

To apply the lessons of evo- devo to technology will require a continued effort to identify the 
evo- devo principles that gave rise to biological life, to determine appropriate levels of abstraction 
away from the biological detail, and to define design methodologies that allow these principles 
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be applied to artificial systems. Current toolbox approaches show great promise, although, in 
the spirit of evo- devo, these systems are now getting sufficiently complex that they themselves 
could be candidates for automated redesign.

Learning more
Several books have captured the excitement around the fusion of evolutionary and develop-
mental approaches in modern biology— Raff (1996), Carroll (2012), and Kirschner and Gerhart 
(2006) are all good places to start. The application of the evo- devo approach to neurobiology 
is still relatively new with most aspects of brain architecture still unexplored. Charvet et  al. 
(2011) discuss some of the key developmental mechanisms in brain evo- devo and consider the 
balance between constancy and change in vertebrate brain evolution, Deacon (2010) and Katz 
(2011) discuss a number of neural generative, selective, and adaptive mechanisms that operate 
to make behavior evolvable, whilst Krubitzer and Seelke (2012) explore the bases for phenotypic 
diversity in relation to the evolution of mammalian cortex. Much of the research that applies 
evo- devo methodologies to artifacts has emerged under the umbrella of “Artificial Life,” and 
a number of classic contributions in this field are provided in Langton (1995); Parisi (1996) 
also provides a conceptual overview and introduction to much of the foundational work, whilst 
Stanley and Miikkulainen (2003) provide a useful synthesis and taxonomy. Nolfi and Floreano 
(2000) review much of the classic work in evolutionary robotics, whilst Pfeifer and Bongard 
(2006) explore the application of some ideas from evo- devo in robots with particular emphasis 
on embodiment. Haddow and Tyrrell (2011) provide a review and critical assessment of the 
application of evo- devo methodologies to electronic systems. Finally, Downing (2015) considers 
many of the topics introduced in this chapter with an overall emphasis on the emergent nature 
of biological intelligence, and with similar enthusiasm for re- purposing nature’s evo- devo tool-
box to create new kinds of Living Machines.
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