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SUMMARY

This protocol presents a workflow for detecting differences in kinematics be-
tween experimental conditions. It is tailored for short-tailed opossums but can
be applied to any species capable of completing the ladder rung task. There
are four phases of this protocol: (1) data collection, (2) pose tracking, (3) analysis
of single trials, and (4) cross-condition comparisons. This pipeline implements as-
pects of machine learning and signal processing, allowing for rapid data analysis
that provides insight into how animals perform this task.
For complete details on the use and execution of this protocol, please refer to
Englund et al. (2020).

BEFORE YOU BEGIN

Construct the ladder rung apparatus and set up camera(s)

Timing: 3–5 h

1. Obtain clear 3 mm thick Plexiglass and cut to dimensions 1.0 m 3 0.2 m (Figure 1A, Metz and

Whishaw 2009). These dimensions are ideal for animals 50 g–300 g. However, taller sides can

be used for larger animals.

a. Complete this process twice, creating the walls of the apparatus.

b. Obtain metal rods 3 mm in diameter and 0.15 m in length.

2. Drill holes along each Plexiglass wall at 1 cm spacing, 1 cm from the bottom of each wall (Fig-

ure 1B).

a. Test that a rung can fit through the first hole before proceeding with drilling the remaining

holes.

3. Place metal rods into remaining holes, connecting the two Plexiglass walls by the metal rungs.

a. if the apparatus splays at the top, either use twometal rungs to brace this portion or a thin strip

of packing tape to hold the apparatus at a consistent width.

4. Place the apparatus on two upside-down clean cages at the start and end of the apparatus. This

can be done on a raised surface about 0.5 m from the floor to discourage animals from jumping

(Figure 1A).
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5. Set up camera 0.5–1.0 m from the apparatus, exactly perpendicular and level to the apparatus

(Figure 1A).

a. Place a scale bar on or in the same plane as the apparatus, in the frame of the camera.

Optional: Multiple cameras can be used to capture the top, bottom, and sides of the ladder

rung task.

CRITICAL: The camera must be placed level to the apparatus (Figure 1A). Incorrect place-

ment of the camera will result in data distortion when limb trajectories are analyzed. If the

camera cannot be placed directly level, the angle between the lens and the ladder can be

used for correction (not recommended).

Alternatives: If Plexiglass is not available, any sturdy clear acrylic is acceptable to use when

constructing the walls of the apparatus. Additionally, if steel rungs are not available, acrylic

or plastic rungs can be used.

Install DeepLabCut and download Jupyter notebooks

Timing: 5–7 h

6. Install Python3 (https://www.python.org/downloads/).

7. Install Anaconda and Jupyter notebook (https://jupyter.org/install).

8. Follow the protocol for the installation of DeepLabCut (https://github.com/DeepLabCut/

DeepLabCut). While we used the original DeepLabCut for our analyses (Mathis et al., 2018),

newer versions of DeepLabCut (2.0 and greater; Nath, Mathis et al., 2019) are compatible with

this protocol, so long as the output files contain the X and Y coordinates of body trackers and like-

lihood columns. If the user wishes to utilize the easy readability of DeepLabCut’s h5 file format,

we point them to https://docs.h5py.org/en/stable/quick.html for a quick start guide on how to

read and explore h5 files in python. For examples on how to visualize data and utilize p-cutoff

values (other than those discussed in this protocol) refer to: https://github.com/DeepLabCut/

DLCutils

9. Download all analysis scripts as Jupyter Notebooks from the Github repository (https://github.

com/maceng4/Monodelphis_Ladder_Rung).

Figure 1. Schematic of the ladder rung apparatus

(A) The start cage (SC) is placed at one end of the apparatus and the animal’s home cage (HC) is placed at the other.

Using two upside-down cages, the researcher can raise the apparatus from the floor. The camera is placed far enough

away from the ladder to capture the entire apparatus in its field-of-view (dotted lines). The camera lens and ladder

rungs must be at the same height (vertical red lines) to capture footage at a zero-degree angle, ensuring accurate limb

tracking data is collected. Figure reprinted with permission from Englund et al., 2020.

(B) For the standard rung pattern, rungs are placed in every other slot. As the slots are drilled 1 cm apart, this creates a

standard rung pattern spacing of 2 cm.
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KEY RESOURCES TABLE

STEP-BY-STEP METHOD DETAILS

Conduct behavioral testing

Timing: 5–10 days per animal

In this major step, animals are tested on the ladder rung apparatus. Animals should undergo nomore

than ten trials per day and should be tested over multiple days to address variability. Animals should

be habituated to the ladder apparatus prior to testing variable patterns. For at least the first day, all

trials should consist of standard (2 cm) rung spacing (Figure 1B). This allows the animal to habituate

to the apparatus. It is possible more habituation days are required if the animal does not willingly

cross the apparatus on Day 1. You may choose the number of habituation days or use an accuracy

criterion score on the 2 cm spacing before beginning testing on variable patterns. Note that the ef-

fects of training may alter the effect of studying naturalistic behavior. On variable testing days, use

2–3 trials of standard rung spacing prior to testing variable patterns to re-habituate animals to the

task. During test trials, the rungs are spaced at irregular intervals, requiring the animal to make

new sensory discriminations to determine the location of future rungs. We suggest using a random

pattern generator to determine these patterns. Variable patterns can either be used once, or the

same variable pattern be run multiple times to study how animals learn variable patterns. Impor-

tantly, youmust choose a single study design to use before testing and limit the total number of trials

per animal per day to ensure animals are attending to the task and do not get fatigued.

1. To begin a single test trial or habituation trial, place a clean start cage on top of the upside-down

start cage and place the animal’s home cage on top of the upside-down end cage (Figure 1A). The

placement of the home cage at the end of the ladder apparatus encourages ladder crossing

without requiring a food reward.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Test csv file: ’Animal_20984_Light_Var1.csv’ Englund et al., 2020 https://doi.org/10.1016/j.isci.2020.101527,
https://github.com/maceng4/Monodelphis_Ladder_Rung/blob/
master/Animal_20984_Light_Var1.csv

Software and algorithms

Python 3 Python Software Foundation https://www.python.org/downloads/

DeepLabCut: markerless pose estimation Mathis et al., 2018 https://github.com/DeepLabCut/DeepLabCut

Jupyter Notebook Project Jupyter https://jupyter.org/

Example notebooks:Pre-Process
(Code Notebook).ipynb
Single_Trial_Code_Notebook.ipynb
Combine_Files.ipynb
Combine_Files_Your_Data.ipynb

This paper https://github.com/maceng4/Monodelphis_Ladder_Rung

Other

Camera: GoPro Hero 6 and above GoPro https://gopro.com/en/us/

3 mm Plexiglass sheet Sibe-R-Plastics https://www.amazon.com/
Sibe-R-Plastics-Supply-0-118-Acrylic-Plexiglass/dp/B084VV78B9/
ref=sr_1_5?dchild=1&keywords=Plexiglass+Sheet+3mm+
36%22&qid=1614223785&sr=8-5

3 mm Metal rods for ladder rungs Uxcell https://www.amazon.com/uxcell-Lathe-Round-Solid-Length/dp/
B0868DLG65

Experimental models: organisms/strains

Monodelphis domestica ( > 120 days
old, male & female)

UC Davis breeding colony N/A
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2. Begin recording video for the trial. Make note of the run, test day, and variable or standard

pattern.

a. Video should be recorded using a linear wide-field lens. We recommend using the GoPro Hero

6 and above. Video should be recorded at 120 frames per second or above (240 fps recom-

mended). Troubleshooting 1

3. Gently remove the animal from their home cage and place the animal in the start (neutral) cage.

Troubleshooting 2

a. We recommend using a transfer cup or box, so that the animal is never directly handled. This

reduces stress for the animal, which can impact performance.

b. If the animal is too small to climb out of the cage and onto the ladder apparatus, we recom-

mend placing a plastic block in the start cage that the animal can use as a step. Alternatively,

the neutral cage can be placed upside down, and the animal can be set on top of the cage.

c. After placing the animal in or on the start cage, step away from the apparatus and out of the

animal’s field of view. It is key that the animal’s attention remains on crossing the apparatus.

4. Stop recording after the animal has reached the home cage. Again, a plastic block can be used to

assist the animal in stepping off the apparatus.

5. Videos can be scored manually, or by adapting the provided Jupyter notebooks to count in-

stances where limb trackers broke the ladder threshold. For scoring measures see Metz and

Whishaw, 2002, 2009.

CRITICAL: Do not place the animal directly on the ladder apparatus or place a hand near

the apparatus to encourage the animal to cross. It is critical for performancemeasures that

the animal enters the apparatus on its own.

Track body position using deeplabcut

Timing: 24 – 48 h (labeling + training)

In this major step, the researcher trains DeepLabCut to track the tail, snout, and limbs.

6. Follow the protocol for training videos in DeepLabCut (Mathis et al., 2018), providing sample

videos from multiple trials.

a. Label the tail, snout, and limbs during the labeling step. We recommend labeling �200

frames, and training for �400,000 iterations. Troubleshooting 3

7. Run the analyze videos function in DeepLabCut for all trials.

8. Save DeepLabCut output comma-separated value sheets (csv’s) for all trials. If h5 files are used in

lieu of csv’s, you must change the file variable in step 9 to the correct path.

Optional: You can choose to label and track additional parts of the body as well (such as mul-

tiple points along the tail). If so, Jupyter notebooks must be amended to include the addi-

tional trackers.

Analyze single run data

Timing: 10 min per trial

In this major step, data is processed from raw data output (from DeepLabCut) to kinematic

waveforms.

9.Run the pre-process code notebook (Data S1).

a. Enter the name of the DeepLabCut output file in cell #2.

b. Looking at the output of cell #2, ensure that the columns of the new data-frame match the orig-

inal file.
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c. Enter the name you wish to save the pre-processed file as in cell #3

d. In cells #4–7, test plots are generated, showing all values (cell #4), only values above your cho-

sen p-cutoff (cell #6), and values below the p-cutoff (#7). This visualization shows the location of

low p-cutoff values (and possible bad tracking). Troubleshooting 4

10. Open Single_Trial_Code_Notebook.ipynb and follow workflow. Troubleshooting 5 During

this step you can also refer to the Single Trial Code Notebook PDF (located in GitHub

folder).

11. In cell #1, enter the required trial information, scale (x pixels = 1 mm), and read in a single trial

pre-processed csv (csv name chosen during step 9). Run cell #1.

a. If you did not place a scale in the video initially, one can be retrieved by measuring the inter-

rung distance in the video and comparing this to the real inter-rung distance (1 cm).

b. ladder_position is equal to the vertical position of the ladder (in pixels) in the analyzed video.

If the camera was held constant for each trial, and all videos were cropped similarly, this will

be a constant number, else it will vary depending on how videos were cropped.

c. height_of_video is equal to the height of the entire video in pixels.

12. Run cell #2. This will plot the waveform of the right forelimb over time (Figure 2A).

a. The positions of all other body parts are also recorded during this time. ‘Time’ can be

adjusted by the frame rate at which the videos were captured.

13. In cell #3, peak detection is accomplished. Enter the height threshold and inter-peak distance

thresholds chosen for your desired analysis (Figure 2B).

a. Only peaks that are detected in this step will be used for further analysis.

b. Run cell #3.

c. Observe the output of cell #3. Adjust peak height/distance and re-run cell #3 if output is not

as desired.

14. Run cell #4. This will print the location of peaks detected in cell #3.

15. In cell #5, remove waveforms you do not wish to analyze by typing in their peak location (as

printed in cell #4).

a. Run cell #5 only after you have removed undesirable waveforms.

b. The output of cell #5 is a plot of the waveforms chosen for analysis (Figure 2C).

16. In cell #6, choose a p-cutoff value and run.

a. The output of cell #6 is a list of values that fall below the chosen p-cutoff.

17. Cell #7 runs a 1-dimensional interpolation, removing datapoints below the p-cutoff, and

creating a new column ‘RFLy_disp_interp’ which contains interpolated values.

18. Run Cells #8 and #9. The output of these cells shows scatterplots of values before (#8) and after

(#9) interpolation. Notice that they are the same for the example notebook, as no values fell

below the p-cutoff.

19. Run cell #10.

a. The output of cell #10 is a line plot of all forelimb waveforms aligned by peak (Figure 2D.)

20. Run cell #11.

a. The output of cell #11 is an average line plot of all waveforms of the right forelimb y-compo-

nent (Figure 2E).

b. At this stage, any other body part can be plotted and viewed by changing ‘‘y=RFLy_disp’’ to a

different body part.

21. In cell #12, adjust the name of the csv to reflect the current trial and animal number you wish to

save this current data as. Run cell #12.

Optional: This major step can be completed multiple times if desired, saving output csv’s

of correct placements or misses, or for data centered around a body part other than the

forelimb.

Note: The data for all body parts is now centered on the movement of the right forelimb. If the

user desires other centering, they must change RFLy_disp to another body part.
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Average data and perform clustering

Timing: 2 min per trial

In this major step, data across trials is aggregated into a single data-frame by loading csv files of all

trials. Cross-group comparisons and clustering are also accomplished in this step.

22. Open and run the ‘Combine_Files.ipynb’ or the ‘Combine_Files_Your_Data.ipynb’ file. During

this step you can also refer to the Combine Files PDF code notebook (Data S3).

Figure 2. Screenshots of output from Analyze Single Run Data (steps 9–21) Single_Trial_Code_Notebook

(A) Lineplot of the right forelimb Y-component across time. Each waveform represents an individual forelimb ‘strike’ in

which the animal lifted its limb from one ladder rung and attempted to place it on another rung.

(B) Lineplot of peaks chosen for further analysis. Peak detection is decided by user input.

(C) Lineplot of individual strikes chosen for analysis. Here, the x-axis denotes the actual x-distance traveled.

(D and E) (D) Individual strikes are then aligned by peak and (E) averaged to create a single correct strike waveform for

an individual trial.
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a. Enter the name of your csv files in cell #1 with respect to subject. Run cell #1, importing pack-

ages and loading csv files.

23. In cell #2, enter a chosen scale value such as shoulder height (or body weight) to normalize your

dataset for animals of different sizes.

a. It is preferable to choose a scale related to kinematics such as arm length or shoulder height.

b. If you chose to use interpolation, change ‘RFLy_disp’ to ‘RFLy_disp_interp’ or add a separate

column for ‘RFLy_disp_scale_interp’ (or any other interpolation you accomplished in the pre-

vious major steps). It is important for concatenation that the column names match across all

animals/trials. Thus, if interpolation is used, it must be used similarly across animals/trials.

c. Run cell #2.

24. Concatenate data-fames by inputting imported data-frame names by category/condition in

cell #3.

a. This step determines what data you will aggregate. Examples are biological sex, correct

placements, incorrect placements, etc.

b. Run cell #3.

c. The output of cell #3 is the number of strikes by condition multiplied by the number of frames

per strike.

25. In cell #4, an aggregated output plot is generated using Seaborn (Figure 3A). Select which fac-

tors and from what dataset to compare in this visualization.

a. Note that the example notebook chooses to plot the average early blind (eb) and sighted (sc)

forelimb trajectory Y-component before and after whisker trimming (ebwt, scwt).

b. Run cell #4.

26. The next five cells give examples of other body parts or aspects of the collected data that can be

analyzed (e.g., X-component trajectories, Hindlimb Trajectory, Snout Trajectory).

a. Explore your data by running cells #5 – #9 (Figures 3B and 3C).

27. Begin clustering.

a. In cell #10, input the name of the data-frames you would like to concatenate for clustering or

use a data-frame you aggregated previously in this notebook.

b. Note that we are re-indexing our data. Since each forelimb strike is 100 frames, we are index-

ing by 100 to re-number the strikes. If you adjusted this number in the previous notebook, it

must also be adjusted here.

c. Run cell #10.

28. Cell #11 runs a basic principal component analysis with K-Means clustering for cluster visualiza-

tion purposes. Run cell #11 and observe the distribution of your data.

29. Cell #12 uses the elbow point method to visualize the distortion level of different numbers of

clusters. Input the number of desired clusters to test as x in: K = range(1, X).

a. Run cell #12.

b. Observe both the printed distortion values and line plot (Figure 3D). For your analysis,

choose the cluster that follows the end of exponential decay.

30. Cell #13 calculates the silhouette coefficient for different cluster numbers (Zhou and Gao, 2014).

a. Run cell #13.

b. Choose the cluster number with the highest silhouette coefficient.

c. If there is a mismatch between the elbow point and silhouette coefficient, incorporate both

cluster numbers in your analysis or choose one based on a tertiary measure.

31. Cell #14 clusters all waveforms into the chosen number of clusters.

a. Enter the number of clusters you would like and run cell #14 (Figure 3E).

32. Save datasets as csv files by entering the name of the chosen dataset and save file name (Cell

#15).

EXPECTED OUTCOMES

This protocol produces a single, organized data-frame of body position information from multiple

trials, animals, and experimental conditions which can then be analyzed in many different ways
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(step 32). Average limb waveforms should show little variation within-subject across trials due to the

constraints of the musculoskeletal system during locomotion and waveform alignment by peak (see

Englund et al., 2020, Figures 2D and 3A). Correct forelimb placements of a single subject should

cluster into few stereotypical waveform types due to these constraints. However, experimental ma-

nipulations (such as those that affect the musculoskeletal, sensory or motor systems) can result in

easy-to-observe differences in aspects of limb kinematics such as peak-height, width, and average

displacement (Figures 3A and 3C).

Figure 3. Screenshots of output from Average Data and Perform Clustering (steps 22–32) Combine_Files Jupyter

Notebook

(A) Average lineplots of forelimb displacement across experimental condition; eb: early blind, ebwt: early blind

whisker-trim, sc: sighted control, scwt: sighted control whisker-trim.

(B) Average lineplots of miss trajectories for early blind (blue) and sighted (red) opossums.

(C) Violin plots of average snout displacement during forelimb motions.

(D) Lineplot showing the level of distortion associated with each cluster number.

(E) Automatically clustered waveforms of forelimb displacement showing two stereotypical correct strikes, and two

stereotypical misses.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Data can be binned, averaged, and visualized using violin, box, or bar plots (Figure 3C). Linear

models run using Python’s Statsmodels package (https://www.statsmodels.org/stable/index.html)

can detect between-group differences. Additionally, aspects of kinematic waveforms such as

peak-height and width at half-maximum can be calculated across subject or experimental condition.

One way to accomplish this is to run peak detection via the Single_Trial_Code_Notebook (Data S2)

and store the peak values in a separate csv file. During any kinematic analysis it is critical that only

data with accurate tracking is included.

LIMITATIONS

Filming the animal from only one angle restricts analysis to two dimensions. Adding a top, bottom,

or second side-view camera ameliorates this issue. The resolution and frames per second captured

by the camera also contribute to data quality. These aspects of data collection factor into DeepLab-

Cut’s ability to track the position of the limbs, snout, and tail. If initial video quality is poor, the num-

ber of forelimb strikes with accurate trackers will be lower, decreasing the total number of strikes that

can be analyzed in major steps 3 and 4. This is the main bottleneck of the protocol. However, Deep-

LabCut continues to update software with increasing accuracy. Another limitation of this protocol is

that the analysis is centered around forelimb kinematics. All analyses are accomplished with respect

to forelimb motion. However, as noted above, the user can alter the included Jupyter notebooks to

center analysis on a different aspect of body posture (e.g center on peaks of the snout as it dips down

to touch a future rung).

TROUBLESHOOTING

Problem 1

Using a wide-field lens can cause distortions in data acquisition (step 2).

Potential solution

Using a wide-field lens can lead to distortions in data, even if the camera is equipped with a linear

processor to flatten the image. To ensure that your wide field lens is not causing distortion, place

a grid 1 cm by 1 cm perpendicular to the camera at a distance equal to that of the ladder apparatus.

By filming the equally spaced grid and measuring the inter-grid distance from the recorded film (in

Photoshop or other program), one can determine the extent of distortion caused by the wide-angle

lens. If there is distortion, it is recommended that a different camera be used or that the distortion be

fixed using image processing tools prior to labeling data in DeepLabCut.

Problem 2

The animal does not cross the ladder apparatus correctly (step 3).

Potential solution

There are many reasons why the animal may not cross the apparatus. Some animals freeze at the

beginning of the apparatus and do not cross at all. Others may move part way and freeze/groom

or attempt to turn around. To ameliorate these issues, ensure that the width of the apparatus is

wide enough for the animal to freely cross, but narrow enough to discourage the animal from turning

around. It is also possible that more habituation trials are required for an animal to learn it must cross

the apparatus. If the animal still does not cross the apparatus after multiple days of habituation, the

researcher can decide to remove this animal from the testing pool. Researchers can also place treats

in the home cage to encourage animals to cross. However, if this is done for one animal, it should be

done for all animals. The number of habituation trials/day should be recorded for each animal to test

against learning effects.

Problem 3

Inaccurate tracking of the limbs with DeepLabCut (step 6a).
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Potential solution

Label more frames and use additional videos from multiple animals/trials/conditions to train the

neural network. You can also use a higher resolution camera or pre-process videos by reducing their

speed. If you choose to do so, you must remember to adjust the frame rate in your final calculation

for 1 frame = x seconds. A third solution is to place the camera closer to the apparatus to increase

resolution. If you do this, it is recommended to use a remote start/stop for the camera so that the

animal is not disturbed during the task.

Problem 4

Visualization plots produced by the pre-process data notebook are not accurate (step 9d).

Potential solution

Due to formatting of the output file from DeepLabCut, it is possible that the csv file is not read

correctly by pandas in python. We have ameliorated this issue by saving the csv file within python

and reloading it before plotting (step 9c). If errors still occur, manually open and save the csv,

ensuring that it is in the proper file format.

Problem 5

Missing necessary Python packages (step 10).

Potential solution

In Jupyter Notebook, use:

!pip install package_name

This will install the missing Python package.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead

contact, Mackenzie Englund (menglund@ucdavis.edu).

Materials availability

There are no unique materials.

Data and code availability

Example datasets and code are available at https://github.com/maceng4/Monodelphis_

Ladder_Rung. Code from the example Jupyter Notebook ‘‘Combine_Files.ipynb’’ uses data from

Englund et al., 2020.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.xpro.2021.100421.

ACKNOWLEDGMENTS

We greatly appreciate the immense time and effort put forth by the creators of DeepLabCut to bring

such a powerful research tool to the scientific community. DeepLabCut will continue to be the inspi-

ration for many publications over the coming years. This research was supported by the McDonnell

Foundation (Grant 220020516 to L.K.) and the National Institute of Neurological Disorders and

Stroke (Grant 1 F31 NS115242-01 to M.E).

ll
OPEN ACCESS

10 STAR Protocols 2, 100421, June 18, 2021

Protocol

mailto:menglund@ucdavis.edu
https://github.com/maceng4/Monodelphis_Ladder_Rung
https://github.com/maceng4/Monodelphis_Ladder_Rung
https://doi.org/10.1016/j.xpro.2021.100421


AUTHOR CONTRIBUTIONS

Conceptualization, M.E. and L.K.; methodology, M.E.; investigation, M.E., S.F., C.S.I., and L.K.;

writing and editing, M.E. and L.K.; funding acquisition, L.K.; supervision, L.K.

DECLARATION OF INTERESTS

The authors declare no competing interests.

REFERENCES

Englund,M., Faridjoo, S., Iyer, C.S., andKrubitzer, L.
(2020). Available sensory input determines motor
performance and strategy in early blind and sighted
short-tailed opossums. iScience 23, 101527.

Mathis, A., Mamidanna, P., Cury, K.M., Abe, T.,
Murthy, V.N., Mathis, M.W., and Bethge, M. (2018).
DeepLabCut: markerless pose estimation of user-
defined body parts with deep learning. Nat.
Neurosci. 21, 1281–1289.

Metz, G.A., and Whishaw, I.Q. (2009). The ladder
rung walking task: a scoring system and its practical
application. J. Vis. Exp. e1204.

Metz, G.A., and Whishaw, I.Q. (2002). Cortical
and subcortical lesions impair skilled walking
in the ladder rung walking test: a new task to
evaluate fore-and hindlimb stepping, placing,
and co-ordination. J. Neurosci. Methods 115,
169–179.

Nath, T., Mathis, A., Chen, A.C., Patel, A., Bethge,
M., and Mathis, M.W. (2019). Using DeepLabCut
for 3D markerless pose estimation across species
and behaviors. Nat. Protoc. 14, 2152–2176.

Zhou, H.B., and Gao, J.T. (2014). Automatic
method for determining cluster number based on
silhouette coefficient. Advanced Materials
Research, vol. 951 (Trans Tech Publications Ltd.),
pp. 227–230.

ll
OPEN ACCESS

STAR Protocols 2, 100421, June 18, 2021 11

Protocol

http://refhub.elsevier.com/S2666-1667(21)00128-3/sref1
http://refhub.elsevier.com/S2666-1667(21)00128-3/sref1
http://refhub.elsevier.com/S2666-1667(21)00128-3/sref1
http://refhub.elsevier.com/S2666-1667(21)00128-3/sref1
http://refhub.elsevier.com/S2666-1667(21)00128-3/sref2
http://refhub.elsevier.com/S2666-1667(21)00128-3/sref2
http://refhub.elsevier.com/S2666-1667(21)00128-3/sref2
http://refhub.elsevier.com/S2666-1667(21)00128-3/sref2
http://refhub.elsevier.com/S2666-1667(21)00128-3/sref2
http://refhub.elsevier.com/S2666-1667(21)00128-3/sref3
http://refhub.elsevier.com/S2666-1667(21)00128-3/sref3
http://refhub.elsevier.com/S2666-1667(21)00128-3/sref3
http://refhub.elsevier.com/S2666-1667(21)00128-3/sref4
http://refhub.elsevier.com/S2666-1667(21)00128-3/sref4
http://refhub.elsevier.com/S2666-1667(21)00128-3/sref4
http://refhub.elsevier.com/S2666-1667(21)00128-3/sref4
http://refhub.elsevier.com/S2666-1667(21)00128-3/sref4
http://refhub.elsevier.com/S2666-1667(21)00128-3/sref4
http://refhub.elsevier.com/S2666-1667(21)00128-3/sref5
http://refhub.elsevier.com/S2666-1667(21)00128-3/sref5
http://refhub.elsevier.com/S2666-1667(21)00128-3/sref5
http://refhub.elsevier.com/S2666-1667(21)00128-3/sref5
http://refhub.elsevier.com/S2666-1667(21)00128-3/sref6
http://refhub.elsevier.com/S2666-1667(21)00128-3/sref6
http://refhub.elsevier.com/S2666-1667(21)00128-3/sref6
http://refhub.elsevier.com/S2666-1667(21)00128-3/sref6
http://refhub.elsevier.com/S2666-1667(21)00128-3/sref6

	XPRO100421_proof_v2i2.pdf
	Kinematic analysis of sensorimotor behavior during variable ladder rung walking in short-tailed opossums (Monodelphis domes ...
	Before you begin
	Construct the ladder rung apparatus and set up camera(s)
	Install DeepLabCut and download Jupyter notebooks

	Key resources table
	Step-by-step method details
	Conduct behavioral testing
	Track body position using deeplabcut
	Analyze single run data
	Average data and perform clustering

	Expected outcomes
	Quantification and statistical analysis
	Limitations
	Troubleshooting
	Problem 1
	Potential solution
	Problem 2
	Potential solution
	Problem 3
	Potential solution
	Problem 4
	Potential solution
	Problem 5
	Potential solution

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References



