

The functional adaptations of mammalian brain structures through a behavioural ecology lens

Ornella C. Bertrand

1,2 & Leah Krubitzer

4,4

Abstract

The organization of the extant mammalian brain is influenced by development, evolutionary history and the environment. Ecological adaptations specifically have had a major role in shaping the structures and associated functions of the mammalian brain. Although general organization of the brain is relatively conserved in modern mammals, throughout millions of years of evolution mammals have acquired diverse sensory and nervous system adaptations as they invaded new ecological niches. Here, we synthesize palaeontological and neurobiological evidence on mammalian brain structure evolution, the mechanisms behind the observed variation in the size and organization of brain structures, and the effect of behavioural ecology on the evolution of brain functions and associated structures. Neuroecology has advanced greatly over the past 40 years and is now unravelling the complex relationship between specific behaviours and brain organization and function. Relying on different types of data, comparative neurobiologists and palaeontologists strive to answer similar questions about brain evolution, benefiting from a synergistic approach. We conclude this Review by outlining outstanding questions regarding the relationships between structure, function, behaviour and evolution that deserve future research attention, and propose methodologies and approaches to help to resolve these problems.

Sections

Introduction

Evolution of mammalian brain diversity

Shaping the evolution of the brain

Integrative approaches to brain evolution

Summary and future directions

¹Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Barcelona, Spain. ²Section of Mammals, Carnegie Museum of Natural History, Pittsburgh, PA, USA. ³Center for Neuroscience, University of California, Davis, CA, USA. ⁴Department of Psychology, University of California, Davis, CA, USA. ©e-mail: ornella.bertrand@icp.cat

Introduction

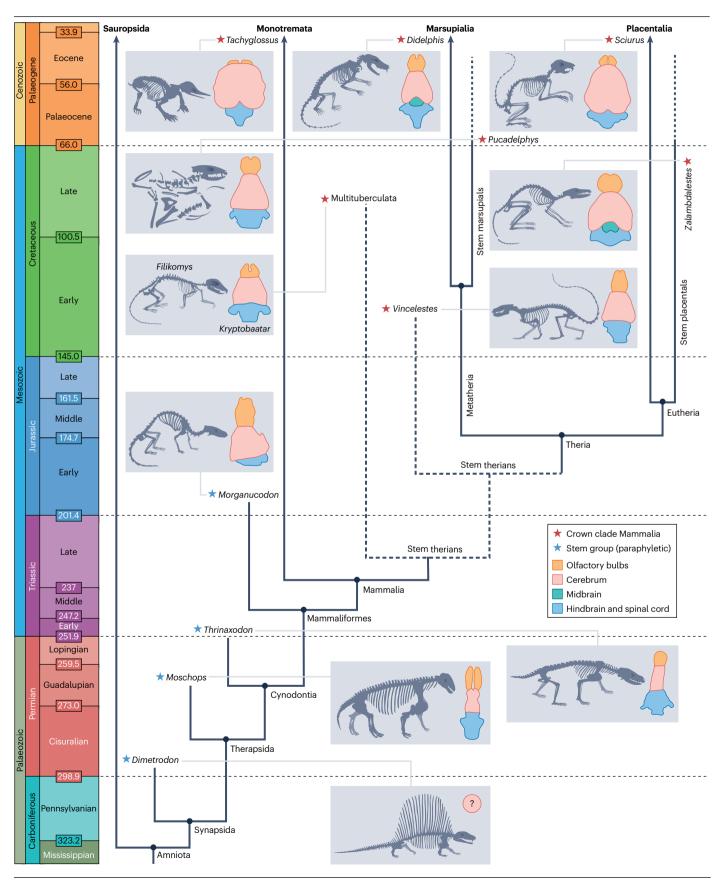
Mammalian brain structures have been influenced by many different factors, including developmental and genetic constraints 1 , evolutionary history and phylogeny 2,3 , the laws of physics 4 , body morphology 5 , and the environment in which an organism develops and lives $^\circ$. The environment has been particularly crucial in the emergence of size and organizational variations in brain structures. Mammals occupy a wide range of habitats associated with a diverse suite of complex behaviours; they swim, fly, burrow, leap, run and climb, in habitats occupying land, water and the air 7 . As a result, mammals have acquired diverse neurosensory adaptations over millions of years of evolution by invading ecological niches that were either new or previously used by other vertebrates 8,9 .

Integrating both palaeontological and neurobiological data can further researchers' understanding of how brain structures evolved, the mechanisms behind the variation observed among brain structures and the effect of behavioural ecology on brain functions. Neurobiology provides valuable soft tissue information, not available in fossils, and facilitates the appreciation of how brain structural organization and interconnectivity are related to behavioural adaptations in a wide range of extant species¹⁰. However, problems might arise when inferring ancestral states from comparative studies of extant species. It can be difficult to disambiguate whether similar structures in different species are homologous or convergently evolved, particularly if only a few species are being compared. Osteological proxies for soft tissue (for example the imprint of the endocranial cavity or brain endocasts), such as those found in fossils, can be used to navigate this problem and can often be used to infer the ancestral condition¹¹. By integrating data obtained from neurobiological and palaeontological approaches, more accurate ancestral-state reconstructions can be derived that account for the rich morphological information available in extant species, while correctly identifying instances of convergence or parallelism within the fossil record. By focusing on the influence of behavioural ecology, researchers can understand why particular features have emerged over the course of evolution in contrast to how these features emerged, which is the province of developmental studies. However, excepting birds, the relationship between behavioural ecology. brain structure and function has not been well studied in vertebrates 12.

In this Review, we describe the emergence and diversification of major mammalian brain structures and their associated functions, informed by extant and extinct species data. We then discuss potential mechanisms behind this neuroanatomical diversity by reviewing the allometric and evolutionary models that help to explain the relationships observed between brain structures, overall brain size and body size. We specifically explore how ecological adaptations shape variations in the relative size of brain structures. We consider evidence that brain functions might be altered via behavioural changes, indirectly leading to changes in the size of brain structures. Finally, we emphasize the advantages of using a multidisciplinary approach to study the effect of behavioural ecology on the evolution of the mammalian brain. This Review focuses exclusively on terrestrial mammals, which experience very different evolutionary and ecological constraints compared with aquatic mammals.

Fig. 1| **The evolution of mammalian brain structure.** Animals are illustrated alongside their brain endocasts where available. Endocasts are not to scale, and delimitations of the regions are approximations. The brain endocast for $Dimetrodon^{148}$ is incomplete and is not illustrated. The midbrain was only illustrated when it was identifiable on the surface of the endocast. Stem group Mammalia are indicated with a blue star. Crown clade Mammalia are denoted

Evolution of mammalian brain diversity


A detailed understanding of the evolutionary history of the mammalian brain and its components is essential for exploring its potential evolutionary drivers. In this section, we integrate palaeontological and neurobiological evidence to describe the evolution of the mammalian brain and the functional role of its structures, and discuss ongoing debates about the evolution of the neocortex and cerebellum.

Origin and organization of the mammalian brain

Around 90% of mammalian species that have existed on Earth are now extinct^{13,14}, but modern mammals are a combination of both ancestral and derived features. The fossil record and an understanding of relationships between extinct and modern species can be used to identify instances of evolutionary convergence and parallelism³. Considering both palaeontological and neurological data, the gross brain organization of mammals seems to be relatively similar across both extinct and extant taxa, indicating that the first mammals probably had a similar Bauplan¹⁵, with some potential exceptions described later. Ancestral-state reconstructions derived from modern species suggest that the organization of some structures was probably present in early mammals, such as topographic organization of sensory areas and ubiquitous patterns of thalamocortical connections¹⁶. Generally, the mammalian brain has olfactory bulbs, a cerebrum and cerebellum with varying degrees of folding, a midbrain, and a brainstem continuous with the spinal cord. The earliest mammals probably had the same organization but without folds (fissures) in their cerebrum and cerebellum^{17,18}. The dorsal region of the cerebrum, the neocortex, is considered a mammalian innovation in comparison to other brain structures, and has changed greatly in both size and organization over the course of mammalian evolution. Specifically, the neocortex represents an expansion of the dorsal cortex that all amniotes possess¹⁹.

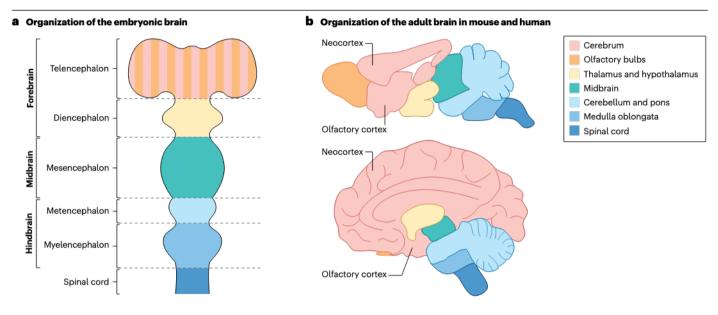
The telencephalon of the amniote ancestor that synapsids share with sauropsids was composed of a pallium (olfactory cortex, hippocampus and dorsal pallium) and subpallium (basal ganglia)^{20,21}. The fossil record indicates that the olfactory bulbs were the first region to expand in the synapsid lineage, followed by the cerebrum, before true mammals emerged²². In extant birds and mammals, the dorsal pallium has changed more strikingly in organization and size (specifically the neocortex and dorsal thalamus) compared with the olfactory cortex (including the olfactory bulbs) and hippocampus¹⁹. The dorsal pallium evolved into the neocortex in mammals (homologous to the wulst in birds)^{23,24}, but remained mostly unchanged in other sauropsids¹⁹; however, the exact timing of this shift in the synapsid lineage is still uncertain because of the lack of evidence of a neocortex in early synapsids. As living sauropsids diverged from mammals more than 300 million years ago (Ma), fossil stem taxa that are more closely related to the crown clade of mammals than to sauropsids will be more informative in determining when this shift occurred (Fig. 1). However, a key challenge lies in identifying the boundary of the neocortex with the olfactory cortex using the rhinal fissure, which is not always preserved in fossils. The rhinal fissure was probably present in Cretaceous

with a red star. *Tachyglossus*, *Didelphis* and *Sciurus* are extant taxa representatives of their respective mammalian clades and are not illustrated concordant with their divergence time. Dates on the timeline are given as millions of years ago. Phylogenetic tree topology and clade age based on refs. 22,149,150. Brain endocast estimations based on data from refs. 15,21,26,40,77,151–153.

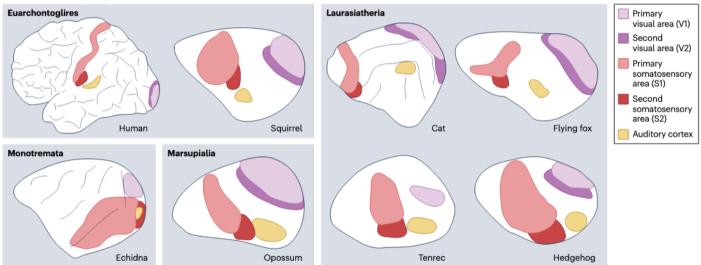
(143–66 Ma)²⁵ mammals²⁶, but not in non-mammal synapsids, suggesting that the expansion of the neocortex might have occurred after mammals diverged from other synapsids²⁷. Other regions of the brain are closely linked to the neocortex via shared signalling pathways. One of these regions is the dorsal thalamus, part of the diencephalon, that sends sensory inputs from the periphery to the neocortex, but this structure is also part of the transthalamic pathway in which specific nuclei receive descending cortical inputs and in turn project back to other cortical areas²⁸. Thus, it is likely that with the expansion of the neocortex in mammals, the thalamus also increased in size^{2,29}. This hypothesis is solely based on studies of extant mammals because the thalamus does not leave a clear imprint on the endocranial surface.

Cortical expansion in mammals has been driven by changes in cell cycle kinetics, and in primates these changes have occurred to an exceptional degree ^{2,30,31}. For example, although mice and humans share many progenitor cell types, as well as specific aspects of cell cycle kinetics during neurogenesis, humans have an expanded outer subventricular zone and have evolved a new cell type called intermediate progenitor cells ^{32,33}. Although developmental studies can uncover the mechanisms by which the neocortex or other brain structures have changed in size and organization, they cannot explain when in a clade's evolutionary history these changes emerged, hence demonstrating the value of integrating of the fossil record with neurobiological data on extant mammals.

Other structures of the brain seem to have changed less markedly, probably because they often contain regions involved in fundamental biological functions such as heart rate, respiration, orienting and balance. Nevertheless, these brain regions do show some variation in their relative size and structure. The midbrain of mammals includes the inferior colliculi (auditory lobes of some sauropsids²⁹ and torus semicircularis in other vertebrates³⁴) and superior colliculi (optic tectum of other vertebrates³⁵). Cretaceous mammals are the only Mesozoic (252-66 Ma) synapsids showing a differentiated midbrain into two lobes, probably the superior colliculi²⁶. According to observations from the fossil record, the midbrain might have independently expanded in different mammalian clades and in these cases would represent a derived condition³⁶. In extant mammals, the relative size and general organization of the midbrain show some variation, especially in species that have unique sensory specializations, such as tree squirrels that rely heavily on visual cues for their arboreal lifestyle³⁷.


Within the vertebrate hindbrain, the cerebellum is the region that has changed most substantially, becoming quite elaborate in birds and mammals^{18,38}. The expansion of the cerebellum might have first occurred in non-mammalian cynodonts and mammaliforms²², but the expansion of the vermis³⁹ into its two hemispheres is unique to mammals. However, the exact timing of differentiation of the vermis into the cerebellar hemispheres remains unclear. Although all modern mammals have cerebellar hemispheres that are visible on endocasts of similar extinct mammals, these hemispheres are not apparent in the endocasts of multituberculates, a mainly Mesozoic group probably more closely related to therians than to monotremes 40 (also see ref. 41 for illustrations of known multituberculate brain endocasts). Therefore, the expansion of the cerebellar hemispheres could either have evolved in parallel between therians and monotremes or have reduced in size in multituberculates 42. Ultimately, computed tomography (CT) scanning of more Mesozoic mammals is likely to be key to resolving uncertainties about the timing of the emergence and expansion of the neocortex, and the potential parallel evolution of the cerebellar hemispheres.

Mammalian brain structures and function


The neocortex is involved in processing and integrating incoming sensory inputs, perception, decision making and other higher-order functions, such as language in humans⁴³. Small-brained mammals (such as rats and short-tailed opossums) tend to have around 15-20 cortical fields, whereas large-brained species (such as humans) could have up to 300 cortical fields^{2,16,44}. The functional organization of different cortical fields has been described in a rather restricted subset of mammals (including monotremes, and some species of marsupials, rodents, bats and primates)^{10,19}. Comparative data indicate that an array of cortical fields is common to all mammals studied and includes the primary visual area (V1), the second visual area (V2), the primary somatosensory area (S1), the second somatosensory area (S2), the primary auditory area (A1) and motor cortex (M1)^{45,46} (Fig. 2). Even when there is no evidence for the use of a specific cortical field, such as a primary visual cortex in blind mole rats, this cortical area can still be defined histologically¹⁶. It is likely that these cortical fields are homologous, inherited from the common ancestor of all mammals.

Despite the shared origins of these cortical fields, alterations of the functional organization, relative size and connectivity of these cortical fields have been identified in different mammals. These changes are associated with unique sensory specializations, along with morphological and behavioural adaptations 10,16. For example, the duck-billed platypus has evolved electrosensory reception mediated by specialized electroreceptors in its bill, and the primary somatosensory cortex is dominated by the representation of electroreceptors and mechanoreceptors of the bill⁴⁷. Echolocating microchiropteran bats have an enlarged A1 as well as other auditory fields specialized for this unique behaviour. Primates with opposable thumbs evolved the fine motor control of the digits necessary to manipulate objects, and M1 is dominated by representations of muscle synergies required to engage in precision grips 48,49. In Egyptian fruit bats, M1 has large representations of movements of the shoulder, hindlimb and ankle as an adaptation to flight. These bats also have an enormous representation of movements of the tongue in M1, which might be associated with the tongue clicks they use to echolocate, as well as their frugivorous lifestyle⁵⁰.

Although estimating the size of cortical fields in the fossil record cannot be done directly, the presence and size of sulci might be used as indicators to broadly separate cortical regions. In arctoid carnivores, the postcruciate and cruciate sulci are expanded with secondary branches⁵¹. In raccoons, red pandas and coatis specifically, S1 has large representations for the forelimb and forepaw^{52,53} in which each finger occupies a separate gyrus, and this enlarged representation has been linked to fine control of the digits necessary for the manipulation of objects⁵⁴. The endocast of the fossil mustelid *Promartes* has relatively well-developed postcruciate and cruciate sulci55,56, which suggests that this cortical field specialization associated with fine control of the digits could already have been present 16–23 Ma (Early Miocene epoch). There are some limitations, because specimens with lissencephalic brains, including Mesozoic and many Cenozoic (66 Ma to present) mammals, lack sulci. However, the surface of brain endocasts has been used to quantify the expansion of cortical regions without the use of sulci. This approach allows for the inclusion of lissencephalic brains, but only broad functions can be inferred ^{57,58}. One important caveat is that the relationship between brain surface and cortical field expansions remains under explored. The inferred expansion of the visual cortex in Oligocene (23-34 Ma) squirrels and Eocene (34-56 Ma) primates is based on the assumption that it is directly linked to the expansion of the caudal region of the neocortex covering the midbrain^{59,60}. However,

C Neocortical map organization in mammals

Fig. 2 | **Organization of the mammalian brain. a**, Organization of the brain at the embryonic developmental stage in humans. **b**, Organization of the brain at the adult stage in mouse (top) and human (bottom), not to scale. Homologous structures are coloured accordingly. Large size differences are apparent in the

olfactory bulbs and the neocortex. ${f c}$, Neocortical map organization in different mammalian clades. Neocortices not to scale. Part ${f b}$ is adapted from ref. 154, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). Part ${f c}$ adapted with permission from ref. 10, Karger.

this pattern could be caused by the expansion of other brain regions pushing the visual cortex in the caudal direction.

The other brain structures that can be studied from both palaeontological and neurobiological perspectives have diverse functionalities. The size of the olfactory bulbs is correlated with an enhanced sense of olfaction and strongly associated with ecology 61-63. The fossil record indicates that the ancestor of mammals had large olfactory bulbs and olfactory cortex relative to other brain regions and probably relied more on olfaction than on other senses 3,15,26. The status of the olfactory system in extant monotremes is varied. The platypus, which has specializations associated with electroreception (as mentioned previously), has relatively small olfactory bulbs and olfactory cortex and does not seem to rely heavily on olfactory-mediated behaviours in its semiaquatic environment. By contrast, echidnas have a specialized olfactory system including large, gyrencephalic olfactory bulbs and a relatively large olfactory cortex 64 . Echidnas rely on olfaction for finding mates and food sources and for navigating in their large home ranges (0.02 km² to 3.56 km²) 65 . More generally, ancestral-state reconstructions recover substantial shifts in olfaction in various mammalian clades, including a decrease in olfaction in early primates $^{3.66}$.

The midbrain is another structure that can be imprinted on endocasts. The superior colliculi are involved in visual orienting and eye movements, whereas the inferior colliculi participate in sound localization, startle response and auditory orienting 67. Colliculi are not always

visible on the endocranial or brain surface as they might be covered by the neocortex, the cerebellum or sinuses 57,60,68. Notably, laryngeal echolocating bats have enlarged inferior colliculi (and auditory cortex, as mentioned previously), which can be visible on the surface of the brain⁶⁹⁻⁷¹. The fossil record indicates that the colliculi were larger than the neocortex in early mammals²⁶, suggesting that they used to have a major role in visual and/or auditory processing. The endocranial anatomy of the Oligocene fossil caylomorph *Incamys* suggests that it might have had enlarged inferior colliculi, linked to enhanced auditory capabilities and social behaviour⁷². Finally, the petrosal lobules (paraflocculi of the cerebellum⁷³) located inside the subarcuate fossa relate to the control and smooth pursuit of eye movements 74. In fast-moving extant mammals, the petrosal lobules are larger, implying that their function might be enhanced in comparison with animals moving more $cautiously ^{6,57,73,75} (but one \, study \, has \, found \, no \, relationship \, between \, the \,$ size of the petrosal lobules and ecology⁷⁶). Some Cretaceous mammals, such as the multituberculates Kryptobaatar and Litovoi, had relatively large petrosal lobules^{41,77}, indicating a potentially higher reliance on these structures compared with earlier members of the mammalian lineage.

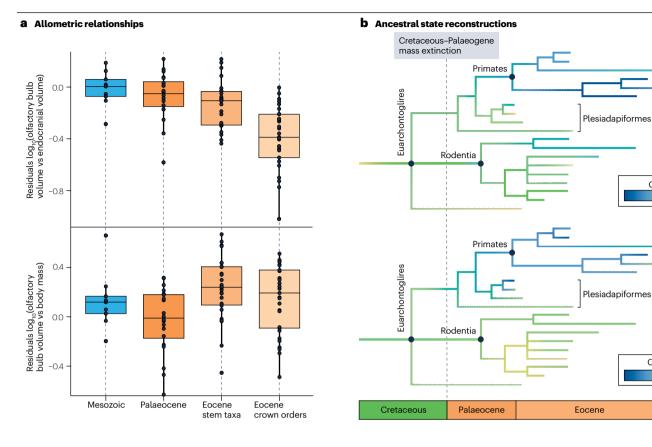
Shaping the evolution of the brain

The size of the brain and body must be considered when quantifying brain structures and their evolutionary pathways in extant and extinct species. In this section, we review the potential mechanisms shaping the relative size of brain structures. Finally, we show that the mosaic and concerted models act at different taxonomic levels and therefore are not mutually exclusive.

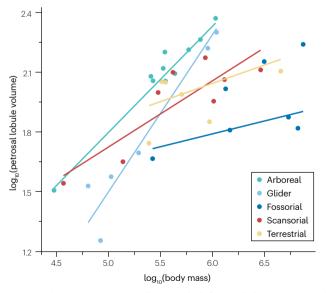
The allometry of the brain and of major brain regions

To use palaeontological and neurological data conjointly to determine the evolutionary drivers that have shaped the mammalian brain, the size of brain regions must be quantified. Brain regions are linked to specific functions that are often distributed across networks composed of multiple brain regions 10,78,79. How this type of organization arose over the course of evolution remains unclear, but as noted previously, the relationship between structure and function is intrinsically linked to morphological and behavioural specializations. This association can be explored by examining the allometric relationships between brain, body and brain structure sizes in different mammalian species⁸⁰. Allometry is a useful tool for palaeontologists because it is a reliable way to test whether a structure might be relatively larger in some species than in others by examining the size of structures relative to body size^{81,82}. This approach is also widely used in neurobiology to study the relationships between the mass of different brain regions, the size of cortical fields or the number of neurons in specific structures^{2,50,83}. Brain regions such as the neocortex, olfactory cortex and cerebellum are correlated with brain size in many mammalian clades and exhibit distinct allometric relationships¹. However, it is not always clear why allometric relationships exist, and why some groups (or species) deviate from these relationships 80,84,85. Equally important considerations are why some brain regions have an allometric relationship and seem to be coevolving with other regions of the brain^{2,86}, and what are the underlying principles by which this coevolution occurs.

Generally, brain size increases with body size in extant mammals¹; however, over the course of evolution, this scaling relationship has changed, with modern species exhibiting larger brains than extinct species of similar body size (indicating a temporal effect on brain size)^{3,87}. After the Palaeocene (56–66 Ma), during the Eocene epoch,


brain size increased more than body size. More specifically, this relative increase in brain size was the result of the expansion of the neocortex and the petrosal lobules³. These structural size changes in relation to brain size could reflect a functional shift⁸⁸. However, this pattern might also be the result of a proportional change and not a true change in the size of a given structure, and thus not a change of its function^{82,89}. For example, from the Palaeocene to the Eocene, the size of the olfactory bulb decreased in relation to brain size, but not in comparison to body size. This suggests that other regions of the brain have increased in proportion (for example the neocortex), but the actual size of the olfactory bulb has remained stable (Fig. 3a). By contrast, clades such as Eocene Primates show a reduction in size of the olfactory bulbs relative to brain and body size, suggesting a real decrease in the size of these structures. Because the sizes of brain structures have been associated with how much a function is used (see previous section), this suggests a reduction in olfaction in Eocene Primates³ (Fig. 3b). In cases where brain structures are not correlated with body size, the actual size (without controlling for overall brain or body size) can be used to deduce function⁷².

These examples underscore the importance of comparing brain structures with both brain size and body size, and of exploring trends in both a clade-specific and taxonomically inclusive manner. Allometry alone is not sufficient to describe the relationship between function, structure and behaviour. Nevertheless, it provides a useful framework to study how brain structures responsible for diverse behaviours vary in their relative functional importance.


Mosaic versus concerted models of evolution

Two key hypotheses have been proposed to explain the allometric relationships and variation observed in mammalian brains^{83,90,91}. The concerted evolution model proposes that the brain is a single integrated unit, and that all brain regions are linked together by developmental processes (for example rate and duration differences in the development of brain regions). This model connects similar brain variations to important ontogenetic events (such as duration of neurogenesis and axonal branching patterns 92,93). Under this model, allometric relationships are due to the order of neurogenesis for different brain structures that appear highly conserved in mammals⁸⁵. For regions that are relatively larger than others (for example the neocortex), the model proposes that this is due to a faster rate of growth of these components. For example, although the thalamus increases with brain size, the neocortex increases at a faster rate². Overall, there is clear evidence for concerted evolution, but this model cannot explain selection for adaptive behaviour that alters specific regions of the brain.

By contrast, the mosaic evolution model proposes that the brain is an aggregation of subunits that are not linked to one another. Under this model, a brain structure might change because an associated behaviour was selected for, while the rest of the brain remains unchanged \$0.84.94. Support for the mosaic model as a driver of ecological specialization can be found in fish \$9.96, reptiles \$91.97, birds \$90 and mammals \$6.84.94. In relaxed versions of the mosaic model (that is, more than one region can vary), brain regions might be either developmentally linked, as in the concerted model, or functionally connected \$90. For example, functional links have been found between structures that have a similar function and therefore covary, such as olfaction (olfactory cortex and olfactory bulbs) and vision (lateral geniculate nucleus and visual cortex) \$94. The presence of developmental constraints helps to maintain the corresponding functionality of two structures. However, it can be challenging to disentangle what type of constraints link brain

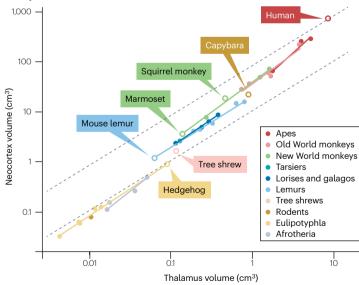


Fig. 3 | **Brain structure size trends. a**, Residuals from a phylogenetic generalized least squares (PGLS) regression of olfactory bulb volume (OB) versus endocranial volume (EV; top), and olfactory bulb volume versus body mass (BM; bottom) for mammals from the Mesozoic, Palaeocene, Eocene stem taxa and Eocene crown orders. Box plots show median and first and third quartiles. **b**, Ancestral-state reconstruction of part of the residuals in part **a** mapped onto a phylogenetic tree of Euarchontoglires. **c**, Phylogenetically corrected PGLS regressions of petrosal lobule volume versus body mass for different locomotor behaviours

d Species trends in volume

OB vs EV

OB vs BM

Oligocene

in Sciuroidea. **d**, Regression of neocortex volume versus thalamus volume in a biodiverse sample of mammals. Where not indicated, volumetric measurements are in cubic millimetres and body mass is in milligrams. All size data are \log_{10} transformed to normalize for body size. Parts **a** and **b** adapted with permission from ref. 3, American Association for the Advancement of Science. Part **c** adapted from ref. 6, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). Part **d** adapted with permission from ref. 2, Elsevier.

components, as both can act simultaneously on the brain and result in similar changes. This complexity makes it difficult to evaluate why diversity in brain regions emerged in modern mammals. One approach is to focus on the contribution of either development or function to the evolution of the brain of organisms. For example, the division of the brain of primates into functional categories instead of structures (such as visual, olfactory, gustatory and spatial cognition) leads to a more complete understanding of the socioecological factors responsible for the observed size covariation among brain regions⁸⁴. Finally, connections between two brain structures covarying in size might disappear because the behaviour produced by the associated connected brain regions has been lost⁸⁰. For instance, the olfactory and visual brain structures are positively correlated in bats, whereas the opposite is true for primates. The observed decrease in olfaction and increase in vision in primates suggests a behavioural or functional shift that resulted in these brain structures changing independently from one other⁹⁸. This interpretation is further supported by the fossil record evidence of a decrease in olfactory bulb size and an increase in optic canal size in primates^{66,99}.

Although the same data might be used to evaluate both the concerted and the mosaic models of evolution, the major difference between the two models relates to the taxonomic rank of study. Considering trends across Mammalia, examples of concerted evolution represent deep brain homologies and probably have a substantial role in shaping covariation in brain regions. For example, intercladal trends in Placentalia exemplify the allometric relationship between the neocortex and the thalamus² (Fig. 3d). Each clade seems bound by specific developmental constraints. However, within specific clades such as eulipotyphlans, slight deviations from their cladistic regression line can be observed. These smaller deviations correspond to mosaic evolution. For example, species belonging to Sciuridae show strong deviations from their total clade regression for the relative size of the olfactory bulbs and the petrosal lobules, which have been linked to different locomotor behaviours^{6,60} (Fig. 3c). Therefore, the concerted evolution model demonstrates that the brains of eulipotyphlans or rodents are constrained by distinct developmental profiles, leading to limited options for diversity. However, the mosaic model illustrates that deviations in the size of brain structures linked to specific ecological niches might arise within each of these clades.

Integrative approaches to brain evolution

Modern approaches are changing the ways that neuroecologists study the relationship between brain structures, functions and behavioural ecology. In this section, we explore these approaches and emphasize the need to systematically consider the evolutionary history of extant mammals when investigating the link between brain evolution and ecology.

Behavioural ecology and brain functions

Throughout decades of studying the external factors affecting the brain of mammals, a recurrent issue has been defining the ecology of mammals and its effect on the size and organization of brain structures. In the past ten years, the link between the size of brain structures and functions with ecology has been increasingly studied, but sampling remains limited and targeted to specific clades such as primates, rodents, bats and lagomorphs (Supplementary Table 1). Some general patterns between brain structure sizes (such as olfactory bulbs and petrosal lobules) and ecological categories (including diet, locomotion and diel pattern) have been identified. For instance, large olfactory bulbs might

be related to a frugivorous diet and nocturnality, whereas large petrosal lobules can be related to fast locomotor behaviour 6,62,73,98,100 (Supplementary Table 1). These trends might reflect some deep causal relationships between the brain and its environment; however, interpreting these correlations is not straightforward and, in many instances, it might not be sensible to treat them as causations.

As noted previously, there is not a one-to-one relationship between brain structures and specific functions: multiple regions of the brain form networks that generate function, and any given region in that network might also be part of another network involved in a different function¹⁰¹. Therefore, instead of testing the ecological impact on a brain structure, testing the effect on a brain function might provide more convincing evidence for a link between brain changes and the environment. However, this prospect still evades the ecological aspect that must be considered, demanding a clearer definition of how function and ecology are linked, such as how vision relates to arboreality. These two categories, vision and arboreality, were created as they are easy to analyse and can generally be applied to a wide array of species. However, these categories were not designed to test the adaptability of specific brain functions. Many arboreal mammals have distinct morphological, sensory and behavioural adaptations¹⁰². These animals' reliance on vision could be reflective of multiple factors, with some of them not being uniquely linked to living in trees, such as finding food, finding mates or escaping from a predator. By contrast, navigating among tree branches is a trait specific to arboreal fauna.

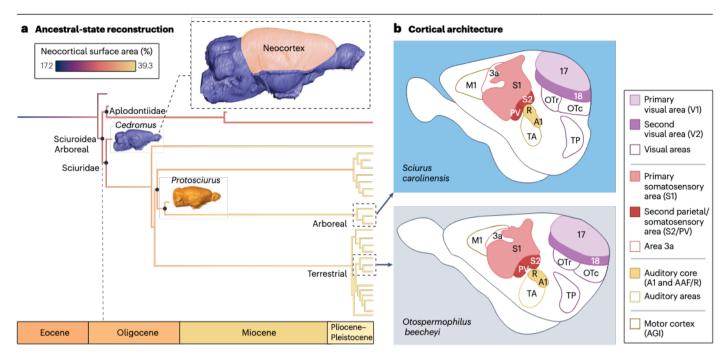
An integrative neuroecological approach that accurately defines specific brain functions and associated behavioural ecologies will continue to benefit researchers seeking to understand how behaviour might drive brain evolution^{12,103}. However, gathering comparable behavioural data for a wide range of species is complicated. Most behavioural datasets represent captive animals in a highly controlled environment, such as the ongoing collection of behavioural audiograms 104,105. Animals did not evolve in laboratory environments, and comparisons of wild-caught and laboratory animals find significant quantifiable disparities in features of brain, such as the density of neurons found in the visual cortex¹⁰⁶. Similarly, rats reared in seminatural conditions demonstrate differences in both motor cortex organization and behaviour involved in the coordination of the limbs when compared with rats bred in a laboratory setting ¹⁰⁷. One of the best examples of the relationship between ecology, morphological and behavioural specialization and cortical organization and function is the star-nosed mole (*Condylura cristata*), the fastest-known forager among mammals. This mole has evolved specialized nose appendages (the star) which contain Eimer's organs. The tactile fovea allows the animal to detect small changes in the shape and texture of a stimulus, such as small objects or prey in their subterranean habitat¹⁰⁸. The representation of the star is magnified in the somatosensory cortex and contributes to the remarkable behaviours exhibited by this mammal¹⁰⁹.

Sensory ecology describes the way an animal interacts with the surrounding environment and is a useful tool in exploring the relationship between behaviour, ecology and the brain (Box 1). Modern neuroecological research has primarily focused on birds including, for example, the variation in the size of the hippocampus and its function (spatial memory) with food hoarding (behaviour). Additionally, given the large constraints imposed by species evolutionary history, a particular behavioural phenotype might not be the only target of selection. Rather, plasticity itself (the ability to generate adaptive behaviour in a dynamic and changing environment) could be the driver behind brain evolution. There is some evidence that changes in behaviour might

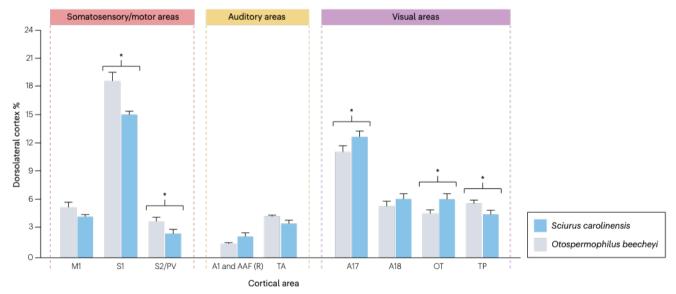
precede changes in morphology¹¹¹, but questions remain regarding the correspondence between the size of brain structures and how they are linked to an organism's behavioural ecology. For example, diurnal and/or frugivorous primates have a larger V1 than other primates⁸⁴. However, this enlargement might not be due to foraging coloured fruits, because nocturnal primates also rely on vision to find food using moonlight¹¹². Despite the idea that enhanced colour vision would be an advantage for finding fruits, behavioural observations have shown no difference in foraging efficacity between dichromat and trichromat individuals^{113,114}. The size variation of V1 in primates might be related to factors other than foraging, such as depth perception, or even social interactions¹¹². To improve our understanding of the drivers behind changes in brain structure sizes, more work needs to incorporate both behaviour and neuroecology.

Integrating neurobiology, palaeontology and behaviour

Species' evolutionary history is critically important when attempting to understand the effect of ecology on the brain evolution of mammals. Using osteological proxies, the behavioural ecology of extinct species can be reconstructed. For instance, before the discovery of early fossil aplodontiids, the fossorial adaptations of the mountain beaver were thought to represent the ancestral condition for Sciuroidea. However, the fossil record indicates that the ancestor of squirrels and mountain beavers was probably an agile tree dweller, suggesting that the fossorial adaptations of the mountain beaver are a derived state^{115,116}. Consequently, when interpreting brain structure size and organization, it must be noted that this brain first evolved for an arboreal environment. Arboreal adaptation is a very deeply rooted trait in squirrel evolution that was already present 35 Ma¹¹⁷ (Fig. 4a). Modern tree squirrels have an expanded visual cortex with multiple cortical fields (Fig. 4b,c), and probably have good depth and colour perception, with strong visuomotor integration necessary to move in the three-dimensional space of the trees. This adaptation heavily contrasts with other nonarboreal rodents, particularly the naked mole rat, which spends all its life underground where vision is not crucial for survival, and has very little of the neocortex (if any) devoted to visual processing 10. The size of brain endocast regions in extant and extinct species supports the hypothesis that arboreality had a fundamental effect on the brain evolution of squirrels. Ancestral-state reconstructions indicate that an increase in the size of the petrosal lobules and neocortex coincided with the acquisition of an arboreal lifestyle in squirrels (Fig. 4a). Inferring functional roles from the brain of extant squirrels, this increase in size is indicative of enhanced eye movement control, and potentially better colour vision, depth perception, spatial location and optic flow in early squirrels. The opposite seems to have occurred in the lineage leading to extant mountain beavers as they rely less on vision because of their fossorial specialization⁶, informed by the smaller visual cortices observed in extant fossorial mammals¹⁰. Crucially, modifications of brain regions are built upon structural organizations of ancestors that probably evolved under different selective pressures driven by ecological adaptation¹¹⁸.


The evolution of bats (Chiroptera) is another example that underscores the value of using a combined approach to understand the effect of echolocation and diet on their nervous system. There are two types of echolocation in extant bats: laryngeal echolocation and tongue-clicking echolocation. Laryngeal echolocation varies considerably, including variability in frequency, and these bats can also be nasal or oral emitters¹¹⁹. Postcranial remains of the earliest bats demonstrate that they were already capable of flight 52 Ma^{120,121}.

Box 1 | Sensory organs and osteological proxies


Sensory ecology is the study of how environmental information is detected and processed, and how the organism responds to this information¹⁵⁵. Sensory organs include the eyes, ears, nose, tongue and skin, and transduce physical stimuli into neural signals and then relay this information to the brain. The sensory organs of a species are adapted to specific ecological niches and have a role in survival and reproduction 156-158. For instance, very distantly related clades such as toothed whales and microchiropteran bats can both use high-frequency echolocation sounds, whereas elephants and baleen whales use very low-frequency sounds to communicate 155 Species can have visual specializations adapted to see more effectively during the day or night^{163,164}. Regarding olfaction, some species are considered macrosmic, relying intensely on the sense of smell (rodents and carnivores), or microsmic, in which this sense could be reduced (some primates) or lost (cetaceans)¹⁶⁵. Sensory organs can sometimes work cooperatively, with potential trade-offs present. For example, mammals that live in trees generally have larger eyes and smaller noses than terrestrial species, implying that the evolution of the senses is highly correlated 166.

The fossil record does not routinely preserve soft tissues such as the sensory organs; however, some osteological proxies can be used to estimate their sizes or shapes and provide insight into the senses and behaviours of extinct taxa. One of the most widely studied sensory organs is the inner ear, with key roles in audition, balance and angular head velocity¹⁶⁷⁻¹⁶⁹. Endocasts of the inner ear provide information on how these senses evolved in fossil mammals¹⁷⁰⁻¹⁷². For olfaction, the cribriform plate and the nasal turbinate (also rarely preserved) can be used. The cribriform plate probably evolved in basal mammals, suggesting enhanced olfactory sensitivity in early members of this group 15,22. The orbit size and the size of the optic canal for the optic nerve (CN II) have been used for estimating vision in fossil primates 99,173. The infraorbital foramen size for the branch of the trigeminal cranial nerve (CN V) has been used to estimate tactile sensitivity of the snout in fossil euarchontans¹⁷⁴. The acquisition of whiskers, used for collecting spatial information in the environment, could be linked to the evolution of the maxillary canal into the infraorbital foramen in mammalian ancestors¹⁷⁵. The proxies of these various sensory organs can be coupled with the study of the brain to improve researchers' understanding of the behaviour organisms in deep time.

Concerning echolocation, the inner ear of the stem bat *Vielasia* was adapted to laryngeal echolocation, and this bat was probably an oral emitter, suggesting that the ancestor of crown bats had similar adaptations ^{122,123}. This indicates that nasal emittance in laryngeal echolocators, tongue-click echolocation and non-echolocation are derived conditions in extant bats, and thus that their respective neurosensory adaptations were built from an oral-laryngeal echolocating bat ancestor. Nevertheless, it is crucial to keep in mind that even bats with this ancestral type of echolocation are likely to be extremely specialized, as the origin of bats occurred over 50 Ma¹²⁴ and members of this lineage have been independently evolving for a very long time. Few brain endocasts have been published for bats. A nasal-emitting fossil hipposiderid bat (*Palaeophyllophora*) shows highly expanded

C Dorsolateral cortex devotion

Fig. 4 | **Cortical architecture trends in squirrels. a**, Ancestral-state reconstruction of neocortical surface area as a percentage of the brain in Sciuroidea and extinct relatives, including virtualized brain endocasts for two representative fossil squirrels, *Cedromus* and *Protosciurus*. **b**, Schematic representations of cortical architecture for two species of extant squirrels, *Sciurus carolinensis* and *Otospermophilus beecheyi*. **c**, Percentage of the dorsolateral cortex devoted to somatosensory/motor, auditory and visual areas in *S. carolinensis* and

O. beecheyi. Error bars represent the s.e.m. The asterisk denotes a significant difference (P < 0.05). A1, primary auditory area; A17, area 17; A18, area 18; AAF, anterior auditory field; M1, primary motor cortex; OT, occipital temporal area; PV, parietal ventral area; R, rostral field; S1, primary somatosensory area; S2, second somatosensory area; TA, temporal anterior area; TP, temporal posterior area. Part a adapted from ref. 6, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). Parts b and c adapted with permission from ref. 10, Karger.

inferior colliculi⁸⁸ similar to extant bats with the same echolocation type⁷¹. Taken together, Palaeogene (23–66 Ma) bats probably relied heavily on audition and were echolocating.

In addition to echolocation, diet seems to have had a huge effect on sensory evolution in bats. Ghost bats, for example, are insectivorous nasal emitters with an expanded auditory cortex that has been associated with echolocation ^{125,126}. Compared with insectivorous bats, frugivorous bats have larger olfactory bulbs ^{62,98}, probably because their plant-based diet requires olfactory foraging ¹²⁷. Frugivorous bats have independently evolved olfactory receptor genes that others bats lack ¹²⁸,

and the flying fox (a non-echolocating bat), for example, has a larger visual cortex, probably associated with foraging coloured fruit¹²⁹. The fossil record, however, suggests that frugivory is probably derived in bats, and ancestral bats might have been insectivores¹³⁰. The olfactory bulbs of *Palaeophyllophora* do not appear especially large, indicative of a non-frugivorous diet. In the same species, a relatively short caudal part of the neocortex suggests a small visual cortex, offering further evidence that these bats did not rely heavily on vision for foraging⁸⁸.

Summary and future directions

The overall brain organization of mammals has been remarkably conserved; however, the structures within the brain show notable variations in terms of their size and organization. Different factors have influenced the evolution of these structures, including developmental constraints, common ancestry, and ecology. The concerted and mosaic models of evolution can both explain the observed variation, and they are not mutually exclusive. They function at different taxonomic levels, with the mosaic model applying better to lower taxonomic ranks than the concerted model. The field of neuroecology has evolved over the past 40 years by first focusing on the effect of broad ecological categories on the size of brain structures and neuron counts of specific brain regions. Today, the focus is on understanding the role of specific behaviours on brain functions, and ultimately on the size variation of associated brain structures. Throughout this Review, we highlight the importance of using both neurobiological and palaeontological perspectives as complementary disciplines to study the evolution of brain structures in relation to behavioural ecology. However, there are many aspects pertaining to the influence of ecology on the brain that are not well understood and should be addressed in the coming years. Here, we suggest some of the most pressing issues for future consideration.

The relationship between brain structures and functions is not always clear, as one structure might be responsible for many functions¹³¹. For example, in humans, functional networks do not always overlap with structural networks¹³². Instead of using a one-toone structure-to-function model, a strong correspondence has been identified between functional and structural modules¹³³. This way of partitioning the brain should continue to be considered in future studies to improve understanding of the functional and structural connectivity of the brain, especially in non-human species. The utility of diverse imaging techniques such as functional magnetic resonance imaging (fMRI), electroencephalography (EEG), magnetoencephalography (MEG) and positron emission tomography (PET), as well as network theory and computational modelling, cannot be overlooked. These techniques have been and will continue to be crucial to understanding the brain structure-function relationship 131,134, especially in the study of active behaviour while recording brain activity¹³⁵. Further, these non-invasive techniques allow for the study of key extant species that otherwise would not be available for invasive studies owing to ethical or conservation guidelines.

The association between behaviour and function require further interrogation, as the observed correlations between these variables might not always represent causation. Lesion, neural inactivation and stimulation studies will probably be required to improve causal inferences¹³⁶. However, alternative neurofeedback approaches (such as variants of task-based neuroimaging) are also promising. This non-invasive method measures how brain functions correlate to specific behaviours. Under this approach, brain activity is modified, which leads to behavioural change and allows a stronger test of causality^{137,138}. For example, in birds, task-based neuroimaging

approaches have enabled researchers to identify direct links between food hoarding, spatial memory and its associated brain structure, the hippocampus¹³⁹. Future behavioural studies also have to consider the *Umwelt* of the animal¹¹⁰ when generating questions and experiments, as species probably experience the world very differently from humans. Researchers must also consider the effect of anthropogenic change on the behaviour of extant animals, especially those that show major differences when compared with behavioural classifications recorded in the literature (such as diel activity in mammals)¹⁴⁰.

Regarding palaeontological integration, the ancestral states of brain structures for diverse mammalian clades are not well understood. Furthermore, brain structures and functions might have evolved in ancestors with very different ecological and behavioural demands than those imposed on extant species. It also remains unclear whether various behaviours in distantly related species with superficially similar ecologies are homologous¹⁴¹. One important step to overcoming these issues is to continue to collect brain and behavioural data on a

Glossary

Amniote

Group of tetrapod vertebrates that has evolved an amnion, a closed sac filled with amniotic fluid that surrounds the embryo, allowing its development outside of water.

Bauplan

General structure of the body or region of the body plan that characterizes a group of organisms such as the brain of Mammalia.

Crown clade

Monophyletic group of species that share a common set of morphological features. It includes all the living representatives of a given group, their common ancestor and all its descendants.

Dichromat

Defines organisms that can only distinguish two primary colours. The condition present in most mammals.

Gyrus

Ridge between sulci of the brain. When taken together, they form a system of complex folding pattern. Brains with folding are known as gyrencephalic brains.

Lissencephalic

Characterizes brains that do not present any sulci on their surface.

Sauropsids

Group of amniotes that includes the crown clades birds, crocodiles, turtles and lepidosaurians (tuataras, lizards, snakes and amphisbaenians) and their closest extinct relatives, including non-avian dinosaurs.

Stem taxa

Paraphyletic group of species that lack some characteristics found in the crown clade. For example, stem mammals are considered the closest relatives to the clade Mammalia.

Sulci

Grooves on the surface of the brain. Complex sulci pattern emerges as brain size increases.

Synapsids

Group of amniotes that includes the crown clade Mammalia and their closest extinct relatives, including the pelycosaur *Dimetrodon*.

Trichromat

Defines organisms that can distinguish all three primary colours. This is the most widespread condition in humans.

Umwelt

Represents the unique way in which organisms perceive the world. This perception will be shaped by the kind of information that can be processed by their sensory organs.

wider range of species to avoid falling into the trap of assuming shared ancestry. Online repositories such as Morphosource¹⁴² already include a vast database of scanned specimens (such as the oVert project¹⁴³) to generate virtual brain endocasts. Non-invasive fMRI¹⁴⁴ and comparative work of extant species that involve other in vivo methods (such as electrophysiology, architecture and neural connections) will continue to improve researchers' understanding of neocortical diversity. Continuing to expand this understanding in species beyond laboratory animals is essential to aid exploration of the link between behaviour and brain structure in a biodiverse array of species, such as sociality in freely moving bats¹⁴⁵.

From a behavioural standpoint, compiling behaviours related to specific ecologies will be crucial. Convergence in arboreal-related behaviours is widespread in vertebrates the correspondence between these behavioural adaptations and brain structures has not been explored at a large scale. Regarding the fossil record, skeletal elements and trace fossils will continue to be important behavioural proxies the continue to be important behavioural proxies.

Ultimately, a multidisciplinary approach that considers different levels of organization from brain structure and function to behavioural ecology and macroevolution will improve researchers' comprehension of the brain diversity present in mammals today. At this stage, the field is still earnestly gathering data, but in the coming years, these data might enable modelling studies elucidating the causes behind these covariations in brain structures.

Published online: 15 October 2025

References

- 1. Finlay, B. in Encyclopedia of Neuroscience (ed. Squire, L. R.) 337–345 (Academic, 2009).
- Halley, A. C. & Krubitzer, L. Not all cortical expansions are the same: the coevolution of the neocortex and the dorsal thalamus in mammals. Curr. Opin. Neurobiol. 56, 78–86 (2019)
- 3. Bertrand, O. C. et al. Brawn before brains in placental mammals after the end-Cretaceous extinction. Science **376**, 80–85 (2022).
- Pang, J. C. et al. Geometric constraints on human brain function. Nature 618, 566–574 (2023).
- Pineda, C. R., Bresee, C., Baldwin, M. K. L., Seelke, A. M. H. & Krubitzer, L. Organization
 of the perioral representation of the primary somatosensory cortex in prairie voles
 (Microtus ochrogaster). Brain Behav. Evol. https://doi.org/10.1159/000543248 (2025).
- Bertrand, O. C., Püschel, H. P., Schwab, J. A., Silcox, M. T. & Brusatte, S. L. The impact of locomotion on the brain evolution of squirrels and close relatives. *Commun. Biol.* 4, 1–15 (2021).
- Rose, K. D. The Beginning of the Age of Mammals (Johns Hopkins Univ. Press, 2006).
- Shelley, S. L., Brusatte, S. L. & Williamson, T. E. Quantitative assessment of tarsal morphology illuminates locomotor behaviour in Palaeocene mammals following the end-Cretaceous mass extinction. Proc. R. Soc. B 288, 20210393 (2021).
- Janis, C. M. Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annu. Rev. Ecol. Syst. 24, 467–500 (1993).
- Krubitzer, L., Campi, K. L. & Cooke, D. F. All rodents are not the same: a modern synthesis of cortical organization. Brain Behav. Evol. 78, 51–93 (2011).
- Bertrand, O. C., Amador-Mughal, F., Lang, M. M. & Silcox, M. T. Virtual endocasts of fossil Sciuroidea: brain size reduction in the evolution of fossoriality. *Palaeontology* 61, 919–948 (2018).
- Healy, S. D., de Kort, S. R. & Clayton, N. S. The hippocampus, spatial memory and food hoarding: a puzzle revisited. *Trends Ecol. Evol.* 20, 17–22 (2005).
- Grossnickle, D. M., Smith, S. M. & Wilson, G. P. Untangling the multiple ecological radiations of early mammals. *Trends Ecol. Evol.* 34, 936–949 (2019).
- Žliobaitė, I. et al. in Evolution of Cenozoic Land Mammal Faunas and Ecosystems: 25 Years of the NOW Database of Fossil Mammals (eds Casanovas-Vilar, I. et al.) 33–42 (Springer, 2023).
- Rowe, T. B., Macrini, T. E. & Luo, Z. X. Fossil evidence on origin of the mammalian brain. Science 332, 955–957 (2011).
- Krubitzer, L. A. & Prescott, T. J. The combinatorial creature: cortical phenotypes within and across lifetimes. *Trends Neurosci.* 41, 744–762 (2018).
- Bertrand, O. C., Michaud, M. & Kirk, E. C. in Evolution of Nervous Systems in Mammals. Evolution of Nervous Systems, 3rd edn, vol. 2 (ed. Krubitzer, L. A.) https://doi.org/10.1016/ B978-0-443-27380-3.00019-1 (Elsevier, 2025).
- Heuer, K. et al. Diversity and evolution of cerebellar folding in mammals. eLife https://doi.org/10.7554/eLife.85907 (2023).

- 19. Kaas, J. H. in Evolutionary Neuroscience 2nd edn (ed. Kaas, J. H.) 333-348 (Academic, 2020).
- Reiner, A. Functional circuitry of the avian basal ganglia: implications for basal ganglia organization in stem amniotes. *Brain Res. Bull.* 57, 513–528 (2002).
- Rowe, T. B. in Paleoneurology of Amniotes: New Directions in the Study of Fossil Endocasts (eds Dozo, M. T. et al.) 365–422 (Springer, 2023).
- Benoit, J., Dollman, K. N., Smith, R. M. H. & Manger, P. R. in Progress in Brain Research, vol. 275 (eds Calvey, T. et al.) 25–72 (Elsevier, 2023).
- Northcutt, G. R. & Kaas, J. H. The emergence and evolution of mammalian neocortex. Trends Neurosci. 18, 373–379 (1995).
- Medina, L. & Reiner, A. Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices? Trends Neurosci. 23, 1–12 (2000).
- Cohen, K. M., Finney, S. C., Gibbard, P. L. & Fan, J.-X. The ICS international chronostratigraphic chart. Episodes 36, 199–204 (2013).
- Kielan-Jaworowska, Z. Evolution of the therian mammals in the Late Cretaceous of Asia.
 Part VI. Endocrapial casts of eutherian mammals. Acta Palaeontol. Pol. 46, 157–171 (1984).
- Norton, L. A., Abdala, F. & Benoit, J. Craniodental anatomy in Permian–Jurassic Cynodontia and Mammaliaformes (Synapsida, Therapsida) as a gateway to defining mammalian soft tissue and behavioural traits. *Phil. Trans. R. Soc. Lond., B* 378, 20220084 (2023).
- Halley, A. C. & Krubitzer, L. in The Cerebral Cortex and Thalamus (eds Halley, A. C. et al.) 585–595 (Oxford Univ. Press, 2023).
- Kier, E. L., Kalra, V. B., Conlogue, G. J., Filippi, C. G. & Saluja, S. Comparative anatomy
 of dissected optic lobes, optic ventricles, midbrain tectum, collicular ventricles,
 and aqueduct: evolutionary modifications as potential explanation for non-tumoral
 aqueductal anomalies in humans. *Childs Nerv. Syst.* 38, 287–294 (2022).
- Florio, M. et al. Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion. Science 347, 1465–1470 (2015).
- 31. Molnár, Z. et al. Evolution and development of the mammalian cerebral cortex. *Brain Behav. Evol.* **83**, 126–139 (2014).
- Molnár, Z. Evolution of cerebral cortical development. Brain Behav. Evol. 78, 94–107 (2011).
- Molnár, Z. & Clowry, G. in Progress in Brain Research, vol. 195 (eds Hofman, M. A. & Falk, D.) 45–70 (Elsevier, 2012).
- Kaas, J. H. in Evolution of the Brain, Cognition, and Emotion in Vertebrates (eds Watanabe, S. et al.) 59–80 (Springer, 2017).
- Pessoa, L., Medina, L., Hof, P. R. & Desfilis, E. Neural architecture of the vertebrate brain: implications for the interaction between emotion and cognition. *Neurosci. Biobehav. Rev.* 107, 296–312 (2019).
- 36. Edinger, T. Midbrain exposure and overlap in mammals. Am. Zool. 4, 5-19 (1964).
- Baldwin, M. K. L., Young, N. A., Matrov, D. & Kaas, J. H. Cortical projections to the superior colliculus in grey squirrels (Sciurus carolinensis). Eur. J. Neurosci. 49, 1008–1023 (2019).
- 38. Naumann, R. K. et al. The reptilian brain. Curr. Biol. 25, R317-R321 (2015).
- Hodos, W. in Encyclopedia of Neuroscience (eds Binder, M. D. et al.) 1240–1243 (Springer, 2009).
- Macrini, T. E., Rougier, G. W. & Rowe, T. Description of a cranial endocast from the fossil mammal *Vincelestes neuquenianus* (Theriiformes) and its relevance to the evolution of endocranial characters in therians. *Anat. Rec.* 290, 875–892 (2007).
- Csiki-Sava, Z., Vremir, M., Meng, J., Brusatte, S. L. & Norell, M. A. Dome-headed, small-brained island mammal from the Late Cretaceous of Romania. *Proc. Natl Acad. Sci. USA* 115, 4857–4862 (2018).
- Gilissen, E. & Smith, T. in Bernissart Dinosaurs and Early Cretaceous Terrestrial Ecosystems (ed. Godefroit, P.) 617–630 (Indiana Univ. Press, 2012).
- Namba, T. & Huttner, W. B. What makes us human: insights from the evolution and development of the human neocortex. Annu. Rev. Cell Dev. Biol. 40, 427-452 (2024).
- O'Connor, D. H., Krubitzer, L. & Bensmaia, S. Of mice and monkeys: somatosensory processing in two prominent animal models. *Prog. Neurobiol.* 201, 102008 (2021).
- Krubitzer, L. In search of a unifying theory of complex brain evolution. Ann. N. Y. Acad. Sci. 1156, 44–67 (2009).
- Karlen, S. J. & Krubitzer, L. The functional and anatomical organization of marsupial neocortex: evidence for parallel evolution across mammals. *Prog. Neurobiol.* 82, 122–141 (2007).
- Krubitzer, L., Manger, P., Pettigrew, J. & Calford, M. Organization of somatosensory cortex in monotremes: in search of the prototypical plan. J. Comp. Neurol. 351, 261–306 (1995).
- Baldwin, M. K. L., Cooke, D. F., Goldring, A. B. & Krubitzer, L. Representations of fine digit movements in posterior and anterior parietal cortex revealed using long-train intracortical microstimulation in macaque monkeys. Cereb. Cortex. 28, 4244–4263 (2018).
- Mayer, A. et al. The multiple representations of complex digit movements in primary motor cortex form the building blocks for complex grip types in capuchin monkeys. J. Neurosci. 39, 6684–6695 (2019).
- Halley, A. C. et al. Coevolution of motor cortex and behavioral specializations associated with flight and echolocation in bats. Curr. Biol. 32, 2935–2941 (2022).
- Boch, M. et al. Comparative neuroimaging of the carnivoran brain: neocortical sulcal anatomy. eLife 13, RP100851 (2024).
- Welker, W. I. & Campos, G. B. Physiological significance of sulci in somatic sensory cerebral cortex in mammals of the family procyonidae. J. Comp. Neurol. 120, 19–36 (1963)
- Welker, W. I. & Seidenstein, S. Somatic sensory representation in the cerebral cortex of the racoon (*Procyon lotor*). J. Comp. Neurol. 111, 469–501 (1959).
- Iwaniuk, A. N. & Whishaw, I. Q. How skilled are the skilled limb movements of the raccoon (Procyon lotor)? Behavioural Brain Res. 99, 35–44 (1999).

- Lyras, G. A., van der Geer, A. A. E. & Werdelin, L. in Paleoneurology of Amniotes: New Directions in the Study of Fossil Endocasts (eds Dozo, M. T. et al.) 681–710 (Springer, 2023).
- Radinsky, L. An example of parallelism in carnivore brain evolution. Evolution 25, 518–522 (1971)
- Fernández Villoldo, J. A., Verzi, D. H., Lopes, R. T., Dos Reis, S. F. & Perez, S. I. Brain size and shape diversification in a highly diverse South American clade of rodents (Echimyidae): a geometric morphometric and comparative phylogenetic approach. *Biol. J. Linn. Soc.* 140, 277–295 (2023).
- Melchionna, M. et al. Cortical areas associated to higher cognition drove primate brain evolution. Commun. Biol. 8, 80 (2025).
- Silcox, M. T., Gunnell, G. F. & Bloch, J. I. Cranial anatomy of *Microsyops annectens* (Microsyopidae, Euarchonta, Mammalia) from the middle Eocene of northwestern Wyoming. *J. Paleontol.* 94, 979–1006 (2020).
- Bertrand, O. C., Amador-Mughal, F. & Silcox, M. T. Virtual endocast of the Early Oligocene Cedromus wilsoni (Cedromurinae) and brain evolution in squirrels. J. Anat. 230, 128–151 (2017).
- Buschhüter, D. et al. Correlation between olfactory bulb volume and olfactory function. NeuroImage 42, 498–502 (2008).
- Bhatnagar, K. P. & Kallen, F. C. Cribriform plate of ethmoid, olfactory bulb and olfactory acuity in forty species of bats. J. Morphol. 142, 71–89 (1974).
- López-Aguirre, C., Alam, B., Mian, M., Ratcliffe, J. M. & Silcox, M. T. Echolocation and dietary adaptations mediate brain-endocast covariation in bats. iScience https://doi.org/ 10.1016/i.isci.2025.112159 (2025).
- Ashwell, K. W. S., Hardman, C. D. & Musser, A. M. Brain and behaviour of living and extinct echidnas. Zoology 117, 349–361 (2014).
- Badgery, G. J., Lawes, J. C. & Leggett, K. E. A. Short-beaked echidna (*Tachyglossus aculeatus*) home range at Fowlers Gap arid zone research station, NSW. PLoS ONE 16, e0242298 (2021)
- Lang, M. M. et al. But how does it smell? An investigation of olfactory bulb size among living and fossil primates and other euarchontoglirans. Anat. Rec. https://doi.org/ 10.1002/ar.25651 (2025).
- 67. Christensen, G. C. & Evans, H. E. Miller's Anatomy of the Dog (Saunders, 1979).
- Brauer, K. & Schober, W. Katalog der Säugetiergehirne: Catalogue of Mammalian Brains (Gustav Fischer, 1970).
- Covey, E. Neurobiological specializations in echolocating bats. Anat. Rec. A 287A, 1103–1116 (2005).
- Alvarez van Tussenbroek, I., Knörnschild, M., Nagy, M., Ten Cate, C. J. & Vernes, S. C. Morphological diversity in the brains of 12 neotropical bat species. *Acta Chiropterologica* 25, 323–338 (2023).
- Thiagavel, J. et al. Auditory opportunity and visual constraint enabled the evolution of echolocation in bats. Nat. Commun. 9, 98 (2018).
- Bertrand, O. C. et al. The virtual brain endocast of *Incamys bolivianus*: insight from the neurosensory system into the adaptive radiation of south American rodents. *Pap. Palaeontol.* 10, e1562 (2024).
- Lang, M. M. et al. Scaling patterns of cerebellar petrosal lobules in Euarchontoglires: impacts of ecology and phylogeny. Anat. Rec. 305, 3472–3503 (2022).
- Hiramatsu, T. et al. Role of primate cerebellar lobulus petrosus of paraflocculus in smooth pursuit eye movement control revealed by chemical lesion. Neurosci. Res. 60, 250–258 (2008).
- Goyens, J., Baeckens, S., Smith, E. S. J., Pozzi, J. & Mason, M. J. Parallel evolution of semicircular canal form and sensitivity in subterranean mammals. J. Comp. Physiol. 208, 627–640 (2022).
- Ferreira-Cardoso, S. et al. Floccular fossa size is not a reliable proxy of ecology and behaviour in vertebrates. Sci. Rep. 7, 2005 (2017).
- Macrini, T. E. The Evolution of Endocranial Space in Mammals and Non-mammalian Cynodonts. Doctoral thesis, Univ. Texas (2006).
- Genon, S., Reid, A., Langner, R., Amunts, K. & Eickhoff, S. B. How to characterize the function of a brain region. *Trends Cogn. Sci.* 22, 350–364 (2018).
- Beltramo, R. & Scanziani, M. A collicular visual cortex: neocortical space for an ancient midbrain visual structure. Science 363, 64–69 (2019).
- 80. Montgomery, S. H., Mundy, N. I. & Barton, R. A. Brain evolution and development: adaptation, allometry and constraint. *Proc. R. Soc. B* **283**, 20160433 (2016).
- Bertrand, O. C., Amador-Mughal, F., Lang, M. M. & Silcox, M. T. New virtual endocasts of Eocene Ischyromyidae and their relevance in evaluating neurological changes occurring through time in Rodentia. J. Mamm. Evol. 26, 345–371 (2019).
- 82. Silcox, M. T., Benham, A. E. & Bloch, J. I. Endocasts of *Microsyops* (Microsyopidae, Primates) and the evolution of the brain in primitive primates. *J. Hum. Evol.* **58**, 505–521 (2010).
- Herculano-Houzel, S., Manger, P. R. & Kaas, J. H. Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size. Front. Neuroanat. 8. 77 (2014).
- DeCasien, A. R. & Higham, J. P. Primate mosaic brain evolution reflects selection on sensory and cognitive specialization. *Nat. Ecol. Evol.* 3, 1483–1493 (2019).
- Finlay, B. & Darlington, R. Linked regularities in the development and evolution of mammalian brains. Science 268, 1578–1584 (1995).
- Barton, R. A. Evolutionary specialization in mammalian cortical structure. *J. Evol. Biol.* 20, 1504–1511 (2007)
- Jerison, H. J. Quantitative analysis of evolution of the brain in mammals. Science 133, 1012–1014 (1961).

- Maugoust, J. & Orliac, M. J. Endocranial cast anatomy of the extinct hipposiderid bats Palaeophyllophora and Hipposideros (Pseudorhinolophus) (Mammalia: Chiroptera).
 J. Mamm. Evol. 28, 679–706 (2021).
- Martin, R. D. Primate Origins and Evolution. A Phylogenetic Reconstruction (Princeton Univ. Press, 1990).
- Moore, J. M. & DeVoogd, T. J. Concerted and mosaic evolution of functional modules in songbird brains. Proc. R. Soc. B 284, 20170469 (2017).
- Hoops, D. et al. Evidence for concerted and mosaic brain evolution in dragon lizards. Brain Behav. Evol. 90, 211–223 (2017).
- Workman, A. D., Charvet, C. J., Clancy, B., Darlington, R. B. & Finlay, B. L. Modeling transformations of neurodevelopmental sequences across mammalian species. J. Neurosci. 33, 7368–7383 (2013).
- Cahalane, D. J., Charvet, C. J. & Finlay, B. L. Modeling local and cross-species neuron number variations in the cerebral cortex as arising from a common mechanism. *Proc. Natl Acad. Sci. USA* 111, 17642–17647 (2014).
- Barton, R. A. & Harvey, P. H. Mosaic evolution of brain structure in mammals. Nature 405, 1055–1058 (2000).
- Huber, R., van Staaden, M. J., Kaufman, L. S. & Liem, K. F. Microhabitat use, trophic patterns, and the evolution of brain structure in African cichlids. *Brain Behav. Evol.* 50, 167-182 (1997).
- 96. Kotrschal, K. & Palzenberger, M. in Environmental Biology of European Cyprinids (eds Wieser, W. et al.) 135–152 (Springer, 1992).
- Macri, S., Savriama, Y., Khan, I. & Di-Poï, N. Comparative analysis of squamate brains unveils multi-level variation in cerebellar architecture associated with locomotor specialization. Nat. Commun. 10, 5560 (2019).
- Barton, R. A., Purvis, A. & Harvey, P. H. Evolutionary radiation of visual and olfactory brain systems in primates, bats and insectivores. *Philos. Trans. R. Soc. Lond., B, Biol. Sci.* 348, 381–392 (1995).
- Kirk, E. C. & Kay, R. F. in Anthropoid Origins: New Visions (eds Ross, C. F. & Kay, R. F.) 539–602 (Springer, 2004).
- Barton, R. A. Olfactory evolution and behavioral ecology in primates. Am. J. Primatol. 68, 545–558 (2006).
- Rishel, C. A., Huang, G. & Freedman, D. J. Independent category and spatial encoding in parietal cortex. Neuron 77, 969–979 (2013).
- Thorpe, S. K. S. & Chappell, J. in Encyclopedia of Animal Cognition and Behavior (eds Vonk, J. & Shackelford, T. K.) 392–399 (Springer, 2022).
- 103. Mars, R. B. & Bryant, K. L. in Encyclopedia of Behavioral Neuroscience Vol. 3 (ed Della Sala, S.) 757–765 (Elsevier, 2022).
- Heffner, R. S., Koay, G., Heffner, H. E. & Mason, M. J. Hearing in African pygmy hedgehogs (Atelerix albiventris): audiogram, sound localization, and ear anatomy. J. Comp. Physiol. 208, 653–670 (2022).
- Jäckel, D., Ortiz Troncoso, A., Dähne, M. & Bölling, C. The animal audiogram database: a community-based resource for consolidated audiogram data and metadata. J. Acoust. Soc. Am. 151, 1125–1132 (2022).
- 106. Campi, K. L., Collins, C. E., Todd, W. D., Kaas, J. & Krubitzer, L. Comparison of area 17 cellular composition in laboratory and wild-caught rats including diurnal and nocturnal species. *Brain Behav. Evol.* 77, 116–130 (2011).
- 107. Gomez, F., Englund, M. & Krubitzer, L. PSTR063.04 / B51 The impact of the environment on the development of the motor and somatosensory cortex: how can a dynamic environment influence cortical structure and function? 2023 Neuroscience Meeting Planner https://www.abstractsonline.com/pp8/#1/10892/presentation/31720 (2023).
- Catania, K. C. & Remple, F. E. Tactile foveation in the star-nosed mole. Brain Behav. Evolution 63, 1-12 (2003).
- Catania, K. C. The sense of touch in the star-nosed mole: from mechanoreceptors to the brain. Phil. Trans. R. Soc. Lond. B 366, 3016–3025 (2011).
- Page, R. A. & ter Hofstede, H. M. Sensory and cognitive ecology of bats. Annu. Rev. Ecol. Syst. 52, 541–562 (2021).
- Price, T. D., Qvarnström, A. & Irwin, D. E. The role of phenotypic plasticity in driving genetic evolution. Proc. R. Soc. B 270, 1433–1440 (2003).
- Bearder, S. K., Nekaris, K. A. I. & Curtis, D. J. A re-evaluation of the role of vision in the activity and communication of nocturnal primates. Folia Primatol. 77, 50–71 (2006).
- 113. Hiramatsu, C. et al. Importance of achromatic contrast in short-range fruit foraging of primates. PLoS ONE 3, e3356 (2008).
- DePasquale, A. N. et al. Does colour vision type drive dietary and nutritional niche differentiation in wild capuchins (Cebus imitator)? Anim. Behav. 205, 89–106 (2023).
- Bhagat, R., Bertrand, O. C. & Silcox, M. T. Evolution of arboreality and fossoriality in squirrels and aplodontid rodents: insights from the semicircular canals of fossil rodents. J. Anat. 238, 96–112 (2021).
- Hopkins, S. S. Causes of lineage decline in the Aplodontidae: testing for the influence of physical and biological change. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 246, 331–353 (2007).
- Emry, R. J. & Thorington, R. W. Descriptive and Comparative Osteology of the Oldest Fossil Squirrel, Protosciurus (Rodentia: Sciuridae) (Smithsonian Institution, 1982).
- Krubitzer, L. & Kaas, J. The evolution of the neocortex in mammals: how is phenotypic diversity generated? Curr. Opin. Neurobiol. 15, 444–453 (2005).
- Brualla, N. L. M. et al. Comparative anatomy of the vocal apparatus in bats and implications for the diversity of laryngeal echolocation. Zool. J. Linnean Soc. https://doi.org/10.1093/ zoolinnean/zlad180 (2024).
- Rietbergen, T. B. et al. The oldest known bat skeletons and their implications for Eocene chiropteran diversification. PLoS ONE 18, e0283505 (2023).

- Simmons, N. B., Seymour, K. L., Habersetzer, J. & Gunnell, G. F. Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation. Nature 451, 818–821 (2008).
- Hand, S. J., Maugoust, J., Beck, R. M. D. & Orliac, M. J. A 50-million-year-old, threedimensionally preserved bat skull supports an early origin for modern echolocation. *Curr. Biol.* 33, 4624–4640 (2023).
- Arbour, J. H., Curtis, A. A. & Santana, S. E. Sensory adaptations reshaped intrinsic factors underlying morphological diversification in bats. BMC Biol. 19, 88 (2021).
- Jones, M. F., Beard, K. C. & Simmons, N. B. Phylogeny and systematics of Early Paleogene bats. J. Mamm. Evol. 31, 18 (2024).
- Washington, S. D. et al. Auditory cortical regions show resting-state functional connectivity with the default mode-like network in echolocating bats. Proc. Natl Acad. Sci. USA 121. e2306029121 (2024).
- Kössl, M. et al. Neural maps for target range in the auditory cortex of echolocating bats. Curr. Opin. Neurobiol. 24, 68–75 (2014).
- Rieger, J. F. & Jakob, E. M. The use of olfaction in food location by frugivorous bats. Biotropica 20, 161–164 (1988).
- Hayden, S. et al. A cluster of olfactory receptor genes linked to frugivory in bats. Mol. Biol. Evol. 31, 917–927 (2014).
- Rosa, M. G. P., Schmid, L. M., Krubitzer, L. A. & Pettigrew, J. D. Retinotopic organization of the primary visual cortex of flying foxes (Pteropus poliocephalus and Pteropus scapulatus). J. Comp. Neurol. 335. 55–72 (1993).
- 130. Simmons, N. B., Seiffert, E. R. & Gunnell, G. F. A new family of large omnivorous bats (Mammalia, Chiroptera) from the Late Eocene of the Fayum depression, Egypt, with comments on use of the name "Eochiroptera". Am. Mus. Novit. 2016, 1–43 (2016).
- Batista-García-Ramó, K. & Fernández-Verdecia, C. I. What we know about the brain structure–function relationship. Behav. Sci. 8, 39 (2018).
- Mišić, B. et al. Network-level structure-function relationships in human neocortex. Cereb. Cortex. 26, 3285–3296 (2016).
- 133. Diez, I. et al. A novel brain partition highlights the modular skeleton shared by structure and function. Sci. Rep. **5**, 10532 (2015).
- Fotiadis, P. et al. Structure–function coupling in macroscale human brain networks. Nat. Rev. Neurosci. 25, 688–704 (2024).
- 135. Yu, X. et al. A wearable small animal PET scanner. J. Nucl. Med. 65, 241373 (2024).
- Siddiqi, S. H., Kording, K. P., Parvizi, J. & Fox, M. D. Causal mapping of human brain function. Nat. Rev. Neurosci. 23, 361–375 (2022).
- Bauer, C. C. C. et al. Real-time fMRI neurofeedback reduces auditory hallucinations and modulates resting state connectivity of involved brain regions: part 2: default mode network — preliminary evidence. Psychiatry Res. 284, 117770 (2020).
- Sitaram, R. et al. Closed-loop brain training: the science of neurofeedback. Nat. Rev. Neurosci. 18, 86–100 (2017).
- Pravosudov, V. V. & Roth II, T. C. Cognitive ecology of food hoarding: the evolution of spatial memory and the hippocampus. Annu. Rev. Ecol. Syst. 44, 173–193 (2013).
- Devarajan, K. et al. When the wild things are: defining mammalian diel activity and plasticity. Sci. Adv. 11. eado3843 (2025).
- Rendall, D. & Di Fiore, A. Homoplasy, homology, and the perceived special status of behavior in evolution. J. Hum. Evol. 52, 504–521 (2007).
- Boyer, D. M., Gunnell, G. F., Kaufman, S. & McGeary, T. M. Morphosource: archiving and sharing 3-D digital specimen data. *Paleontol. Soc. Pap.* 22, 157-181 (2016).
- 143. Blackburn, D. C. et al. Increasing the impact of vertebrate scientific collections through 3D imaging: the openVertebrate (oVert) Thematic Collections Network. BioScience 74, 169–186 (2024).
- 144. Ikeda, T. et al. Cortical adaptation of the night monkey to a nocturnal niche environment: a comparative non-invasive T1w/T2w myelin study. Brain Struct. Funct. 228, 1107–1123 (2023).
- 145. Rose, M. C., Styr, B., Schmid, T. A., Elie, J. E. & Yartsev, M. M. Cortical representation of group social communication in bats. Science 374, eaba9584 (2021).
- Young, J. W. in Convergent Evolution: Animal Form and Function (eds Bels, V. L. & Russell, A. P.) 289–322 (Springer, 2023).
- Lister, A. M. Behavioural leads in evolution: evidence from the fossil record. Biol. J. Linn. Soc. 112, 315–331 (2014).
- Bazzana-Adams, K. D., Evans, D. C. & Reisz, R. R. Neurosensory anatomy and function in *Dimetrodon*, the first terrestrial apex predator. iScience https://doi.org/10.1016/ i.isci.2023.106473 (2023).
- Wang, J. et al. A monotreme-like auditory apparatus in a Middle Jurassic haramiyidan. Nature 590, 279–283 (2021).
- Ford, D. P. & Benson, R. B. J. The phylogeny of early amniotes and the affinities of parareptilia and varanopidae. Nat. Ecol. Evol. 4, 57–65 (2020).
- 151. Pusch, L. C., Kammerer, C. F. & Fröbisch, J. The origin and evolution of cynodontia (Synapsida, Therapsida): reassessment of the phylogeny and systematics of the earliest members of this clade using 3D-imaging technologies. *Anat. Rec.* 307, 1634–1730 (2024).
- Benoit, J. & Midzuk, A. Estimating the endocranial volume and body mass of Anteosaurus, Jonkeria, and Moschops (Dinocephalia, Therapsida) using 3D sculpting. Palaeontol. Electron. 27, 1–11 (2024).
- Macrini, T. E., de Muizon, C., Cifelli, R. L. & Rowe, T. Digital cranial endocast of Pucadelphys andinus, a Paleocene metatherian. J. Vertebr. Paleontol. 27, 99–107 (2007).
- 154. Haynes, E. M., Ulland, T. K. & Eliceiri, K. W. A model of discovery: the role of imaging established and emerging non-mammalian models in neuroscience. Front. Mol. Neurosci. https://doi.org/10.3389/fnmol.2022.867010 (2022).

- Stevens, M. in Sensory Ecology, Behaviour, and Evolution (ed. Stevens, M.) Ch. 1 (Oxford Univ. Press, 2013).
- 156. Emerling, C. A., Huynh, H. T., Nguyen, M. A., Meredith, R. W. & Springer, M. S. Spectral shifts of mammalian ultraviolet-sensitive pigments (short wavelength-sensitive opsin 1) are associated with eye length and photic niche evolution. Proc. R. Soc. B 282, 20151817 (2015).
- Le Maître, A., Grunstra, N. D. S., Pfaff, C. & Mitteroecker, P. Evolution of the mammalian ear: an evolvability hypothesis. Evol. Biol. 47, 187–192 (2020).
- Catania, K. C. Correlates and possible mechanisms of neocortical enlargement and diversification in mammals. J. Comp. Psychol. 17, 71–91 (2004).
- Garstang, M. Long-distance, low-frequency elephant communication. J. Comp. Physiol. 190, 791–805 (2004).
- Bohn, K. M., Moss, C. F. & Wilkinson, G. S. Correlated evolution between hearing sensitivity and social calls in bats. *Biol. Lett.* 2, 561–564 (2006).
- Churchill, M., Martinez-Caceres, M., de Muizon, C., Mnieckowski, J. & Geisler, J. H.
 The origin of high-frequency hearing in whales. Curr. Biol. 26, 2144–2149 (2016).
- Lattenkamp, E. Z. et al. Hearing sensitivity and amplitude coding in bats are differentially shaped by echolocation calls and social calls. Proc. R. Soc. B 288, 20202600 (2021).
- Veilleux, C. C. & Kirk, E. C. Visual acuity in mammals: effects of eye size and ecology. Brain Behav. Evol. 83, 43–53 (2014).
- Bickelmann, C. et al. The molecular origin and evolution of dim-light vision in mammals. *Evolution* 69, 2995–3003 (2015).
- Korsching, S. in Chemosensory Transduction (eds Zufall, F. & Munger, S. D.) 81–100 (Academic, 2016).
- Nummela, S. et al. Exploring the mammalian sensory space: co-operations and trade-offs among senses. J. Comp. Physiol. 199, 1077–1092 (2013).
- Spoor, F. et al. The primate semicircular canal system and locomotion. Proc. Natl Acad. Sci. USA 104, 10808–10812 (2007).
- Malinzak, M. D., Kay, R. F. & Hullar, T. E. Locomotor head movements and semicircular canal morphology in primates. Proc. Natl Acad. Sci. USA 109, 17914–17919 (2012).
- 169. Ekdale, E. G. Form and function of the mammalian inner ear. J. Anat. 228, 324–337 (2016).
- Silcox, M. T. et al. Semicircular canal system in early primates. J. Hum. Evol. 56, 315–327 (2009).
- 171. Kirk, E. C., Hoffmann, S., Kemp, A. D., Krause, D. W. & O'Connor, P. M. Sensory anatomy and sensory ecology of *Vintana Sertichi* (Mammalia, Gondwanatheria) from the Late Cretaceous of Madagascar. *J. Vertebr. Paleontol.* 34, 203–222 (2014).
- 172. Bertrand, O. C. et al. Virtual endocranial and inner ear endocasts of the Paleocene 'condylarth' Chriacus: new insight into the neurosensory system and evolution of early placental mammals. J. Anat. 236, 21–49 (2020).
- Silcox, M. T., Dalmyn, C. K. & Bloch, J. I. Virtual endocast of Ignacius graybullianus (Paromomyidae, Primates) and brain evolution in early primates. Proc. Natl Acad. Sci. USA 106, 10987-10992 (2009).
- Muchlinski, M. N. & Kirk, E. C. A comparative analysis of infraorbital foramen size in Paleogene euarchontans. J. Hum. Evol. 105, 57–68 (2017).
- Benoit, J., Manger, P. R. & Rubidge, B. S. Palaeoneurological clues to the evolution of defining mammalian soft tissue traits. Sci. Rep. 6, 25604 (2016).

Acknowledgements

O.C.B. is supported by the Beatriu de Pinós Programme, funded by the Direcció General de Recerca de la Generalitat de Catalunya and managed by AGAUR, expedient number 2021 BP 00042 to O.C.B. O.C.B. is also supported by the Generalitat de Catalunya/CERCA Programme, the Agència de Gestió d'Ajust Universitaris i de Recerca of the Generalitat de Catalunya (2021 SGR 00620) to David M. Alba (Institute Català De Paleontologia). L.K. is supported by NEI (R01EY034303) and NINDS (R01NS115881).

Author contributions

The authors contributed equally to all aspects of the article.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s44358-025-00095-0.

Peer review information *Nature Reviews Biodiversity* thanks Aida Gomez-Robles and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

© Springer Nature Limited 2025